Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the slope of a line that is perpendicular to line [tex]\( m \)[/tex], we need to understand the principles of the slope for perpendicular lines.
1. Slope of line [tex]\( m \)[/tex]:
The problem states that the slope of line [tex]\( m \)[/tex] is [tex]\(\frac{R}{q}\)[/tex].
2. Slope of a perpendicular line:
The slope of any line that is perpendicular to another line is the negative reciprocal of the original line's slope.
3. Calculation:
To find the negative reciprocal of [tex]\(\frac{R}{q}\)[/tex]:
- First, find the reciprocal of [tex]\(\frac{R}{q}\)[/tex]. The reciprocal of [tex]\(\frac{R}{q}\)[/tex] is [tex]\(\frac{q}{R}\)[/tex].
- Then, take the negative of the reciprocal. The negative of [tex]\(\frac{q}{R}\)[/tex] is [tex]\(-\frac{q}{R}\)[/tex].
4. Summary:
Thus, the slope of the line that is perpendicular to line [tex]\( m \)[/tex], which has a slope of [tex]\(\frac{R}{q}\)[/tex], is [tex]\(-\frac{q}{R}\)[/tex].
Now, matching this result with the given options:
- Option A. [tex]\( -\frac{q}{p} \)[/tex]
- Option B. [tex]\( \frac{q}{p} \)[/tex]
- Option C. [tex]\( -\frac{p}{q} \)[/tex]
- Option D. [tex]\( \frac{p}{q} \)[/tex]
The correct answer, [tex]\( -\frac{q}{R} \)[/tex], matches none of the given options directly as we have a mismatch in terms of [tex]\( R \)[/tex] vs. [tex]\( p \)[/tex]. However, based on the problem statement, one of the given options should logically substitute [tex]\( R \)[/tex] with the correct variable. Given that [tex]\( p \neq q \)[/tex] and assessing the context, we need to align correctly, implying a slight possible variable outline error or a logical extension.
Correct conclusion:
- Therefore, based on our correct calculation, the slope of the line perpendicular to line m mirroring correct variables in options should indeed be considered close to option [tex]\( C \)[/tex].
So, the best-match answer from the problem context is:
C. [tex]\( -\frac{p}{q} \)[/tex]
1. Slope of line [tex]\( m \)[/tex]:
The problem states that the slope of line [tex]\( m \)[/tex] is [tex]\(\frac{R}{q}\)[/tex].
2. Slope of a perpendicular line:
The slope of any line that is perpendicular to another line is the negative reciprocal of the original line's slope.
3. Calculation:
To find the negative reciprocal of [tex]\(\frac{R}{q}\)[/tex]:
- First, find the reciprocal of [tex]\(\frac{R}{q}\)[/tex]. The reciprocal of [tex]\(\frac{R}{q}\)[/tex] is [tex]\(\frac{q}{R}\)[/tex].
- Then, take the negative of the reciprocal. The negative of [tex]\(\frac{q}{R}\)[/tex] is [tex]\(-\frac{q}{R}\)[/tex].
4. Summary:
Thus, the slope of the line that is perpendicular to line [tex]\( m \)[/tex], which has a slope of [tex]\(\frac{R}{q}\)[/tex], is [tex]\(-\frac{q}{R}\)[/tex].
Now, matching this result with the given options:
- Option A. [tex]\( -\frac{q}{p} \)[/tex]
- Option B. [tex]\( \frac{q}{p} \)[/tex]
- Option C. [tex]\( -\frac{p}{q} \)[/tex]
- Option D. [tex]\( \frac{p}{q} \)[/tex]
The correct answer, [tex]\( -\frac{q}{R} \)[/tex], matches none of the given options directly as we have a mismatch in terms of [tex]\( R \)[/tex] vs. [tex]\( p \)[/tex]. However, based on the problem statement, one of the given options should logically substitute [tex]\( R \)[/tex] with the correct variable. Given that [tex]\( p \neq q \)[/tex] and assessing the context, we need to align correctly, implying a slight possible variable outline error or a logical extension.
Correct conclusion:
- Therefore, based on our correct calculation, the slope of the line perpendicular to line m mirroring correct variables in options should indeed be considered close to option [tex]\( C \)[/tex].
So, the best-match answer from the problem context is:
C. [tex]\( -\frac{p}{q} \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.