Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! To factor the quadratic expression [tex]\(a^2 - 3a - 28\)[/tex], let's go through the steps systematically:
1. Identify the quadratic expression:
[tex]\[ a^2 - 3a - 28 \][/tex]
2. Look for factors of the constant term: In this case, the constant term is [tex]\(-28\)[/tex]. We need to find two numbers that multiply to [tex]\(-28\)[/tex].
3. Find pair of factors that add up to the middle coefficient: We need those factors to also sum to the middle coefficient, which is [tex]\(-3\)[/tex].
Let's list the pairs of factors of [tex]\(-28\)[/tex]:
[tex]\[ (1, -28), (-1, 28), (2, -14), (-2, 14), (4, -7), (-4, 7) \][/tex]
4. Identify the correct pair of factors: Among these, the pair [tex]\((4, -7)\)[/tex] works because:
[tex]\[ 4 \cdot (-7) = -28 \quad \text{and} \quad 4 + (-7) = -3 \][/tex]
5. Rewrite the quadratic expression: We can use these factors to split the middle term [tex]\(-3a\)[/tex] into two terms. Thus, we rewrite:
[tex]\[ a^2 - 3a - 28 = a^2 + 4a - 7a - 28 \][/tex]
6. Group terms to factor by grouping:
[tex]\[ a^2 + 4a - 7a - 28 = (a^2 + 4a) + (-7a - 28) \][/tex]
7. Factor out the common factors in each group:
[tex]\[ a(a + 4) - 7(a + 4) \][/tex]
8. Factor out the common binomial factor:
[tex]\[ (a + 4)(a - 7) \][/tex]
So, the factored form of the quadratic expression [tex]\(a^2 - 3a - 28\)[/tex] is:
[tex]\[ (a - 7)(a + 4) \][/tex]
1. Identify the quadratic expression:
[tex]\[ a^2 - 3a - 28 \][/tex]
2. Look for factors of the constant term: In this case, the constant term is [tex]\(-28\)[/tex]. We need to find two numbers that multiply to [tex]\(-28\)[/tex].
3. Find pair of factors that add up to the middle coefficient: We need those factors to also sum to the middle coefficient, which is [tex]\(-3\)[/tex].
Let's list the pairs of factors of [tex]\(-28\)[/tex]:
[tex]\[ (1, -28), (-1, 28), (2, -14), (-2, 14), (4, -7), (-4, 7) \][/tex]
4. Identify the correct pair of factors: Among these, the pair [tex]\((4, -7)\)[/tex] works because:
[tex]\[ 4 \cdot (-7) = -28 \quad \text{and} \quad 4 + (-7) = -3 \][/tex]
5. Rewrite the quadratic expression: We can use these factors to split the middle term [tex]\(-3a\)[/tex] into two terms. Thus, we rewrite:
[tex]\[ a^2 - 3a - 28 = a^2 + 4a - 7a - 28 \][/tex]
6. Group terms to factor by grouping:
[tex]\[ a^2 + 4a - 7a - 28 = (a^2 + 4a) + (-7a - 28) \][/tex]
7. Factor out the common factors in each group:
[tex]\[ a(a + 4) - 7(a + 4) \][/tex]
8. Factor out the common binomial factor:
[tex]\[ (a + 4)(a - 7) \][/tex]
So, the factored form of the quadratic expression [tex]\(a^2 - 3a - 28\)[/tex] is:
[tex]\[ (a - 7)(a + 4) \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.