Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Factor completely:

[tex]\[ 64v^2 - f^2 \][/tex]


Sagot :

To factor the given expression [tex]\(64v^2 - f^2\)[/tex] completely, we can use the difference of squares method. The difference of squares formula is given by:

[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]

In this case, our expression [tex]\(64v^2 - f^2\)[/tex] fits the difference of squares pattern, where:
- [tex]\(a^2 = 64v^2\)[/tex]
- [tex]\(b^2 = f^2\)[/tex]

First, we identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex] from the given expression:
- Since [tex]\(64v^2\)[/tex] is a perfect square, we can write it as [tex]\((8v)^2\)[/tex]. Therefore, [tex]\(a = 8v\)[/tex].
- Similarly, since [tex]\(f^2\)[/tex] is a perfect square, we have [tex]\(b = f\)[/tex].

Using the difference of squares formula:

[tex]\[ (8v)^2 - f^2 = (8v - f)(8v + f) \][/tex]

Therefore, the completely factored form of the expression [tex]\(64v^2 - f^2\)[/tex] is:

[tex]\[ (8v - f)(8v + f) \][/tex]