Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To factor the polynomial [tex]\( 4a^2 - 21a + 5 \)[/tex], let's follow these steps:
1. Identify the polynomial structure:
The polynomial [tex]\( 4a^2 - 21a + 5 \)[/tex] is a quadratic expression in the form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = 4 \)[/tex], [tex]\( b = -21 \)[/tex], and [tex]\( c = 5 \)[/tex].
2. Look for two numbers that multiply to [tex]\( ac \)[/tex] and add up to [tex]\( b \)[/tex]:
- Here, [tex]\( a \cdot c = 4 \times 5 = 20 \)[/tex].
- We need to find two numbers that multiply to 20 and add up to [tex]\( -21 \)[/tex].
3. Find such pair of numbers:
- The numbers [tex]\( -1 \)[/tex] and [tex]\( -20 \)[/tex] work because:
\begin{align}
-1 \times -20 & = 20 \quad (\text{product is } 20) \\
-1 + (-20) & = -21 \quad (\text{sums up to } -21)
\end{align}
4. Rewrite the middle term using these two numbers:
- Rewrite [tex]\( -21a \)[/tex] as [tex]\( -1a - 20a \)[/tex]:
[tex]\[ 4a^2 - 21a + 5 = 4a^2 - 1a - 20a + 5 \][/tex]
5. Group the terms to factor by grouping:
- Group the terms:
[tex]\[ (4a^2 - 1a) + (-20a + 5) \][/tex]
6. Factor out the greatest common factor (GCF) from each group:
- From the first group [tex]\( 4a^2 - 1a \)[/tex], factor out [tex]\( a \)[/tex]:
[tex]\[ a(4a - 1) \][/tex]
- From the second group [tex]\( -20a + 5 \)[/tex], factor out [tex]\( -5 \)[/tex]:
[tex]\[ -5(4a - 1) \][/tex]
7. Factor out the common binomial factor:
- Now, we have:
[tex]\[ a(4a - 1) - 5(4a - 1) \][/tex]
- Notice that [tex]\( (4a - 1) \)[/tex] is a common factor. Factor this out:
[tex]\[ (a - 5)(4a - 1) \][/tex]
So, the polynomial [tex]\( 4a^2 - 21a + 5 \)[/tex] factors to [tex]\( (a - 5)(4a - 1) \)[/tex].
1. Identify the polynomial structure:
The polynomial [tex]\( 4a^2 - 21a + 5 \)[/tex] is a quadratic expression in the form [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = 4 \)[/tex], [tex]\( b = -21 \)[/tex], and [tex]\( c = 5 \)[/tex].
2. Look for two numbers that multiply to [tex]\( ac \)[/tex] and add up to [tex]\( b \)[/tex]:
- Here, [tex]\( a \cdot c = 4 \times 5 = 20 \)[/tex].
- We need to find two numbers that multiply to 20 and add up to [tex]\( -21 \)[/tex].
3. Find such pair of numbers:
- The numbers [tex]\( -1 \)[/tex] and [tex]\( -20 \)[/tex] work because:
\begin{align}
-1 \times -20 & = 20 \quad (\text{product is } 20) \\
-1 + (-20) & = -21 \quad (\text{sums up to } -21)
\end{align}
4. Rewrite the middle term using these two numbers:
- Rewrite [tex]\( -21a \)[/tex] as [tex]\( -1a - 20a \)[/tex]:
[tex]\[ 4a^2 - 21a + 5 = 4a^2 - 1a - 20a + 5 \][/tex]
5. Group the terms to factor by grouping:
- Group the terms:
[tex]\[ (4a^2 - 1a) + (-20a + 5) \][/tex]
6. Factor out the greatest common factor (GCF) from each group:
- From the first group [tex]\( 4a^2 - 1a \)[/tex], factor out [tex]\( a \)[/tex]:
[tex]\[ a(4a - 1) \][/tex]
- From the second group [tex]\( -20a + 5 \)[/tex], factor out [tex]\( -5 \)[/tex]:
[tex]\[ -5(4a - 1) \][/tex]
7. Factor out the common binomial factor:
- Now, we have:
[tex]\[ a(4a - 1) - 5(4a - 1) \][/tex]
- Notice that [tex]\( (4a - 1) \)[/tex] is a common factor. Factor this out:
[tex]\[ (a - 5)(4a - 1) \][/tex]
So, the polynomial [tex]\( 4a^2 - 21a + 5 \)[/tex] factors to [tex]\( (a - 5)(4a - 1) \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.