Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the point of intersection between a function [tex]\( f(x) \)[/tex] and its inverse function [tex]\( f^{-1}(x) \)[/tex], we need to identify where the graphs of [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex] cross each other. By definition, the point of intersection occurs where [tex]\( f(x) = f^{-1}(x) \)[/tex]. This implies that at the intersection point, the x-coordinate and y-coordinate are equal, resulting in a point [tex]\((x, x)\)[/tex].
Given the two possible points of intersection:
1. [tex]\((0, -2)\)[/tex]
2. [tex]\((1, -1)\)[/tex]
We will check each point to see if it fits the form [tex]\((x, x)\)[/tex], meaning both coordinates are the same.
Checking the first point [tex]\((0, -2)\)[/tex]:
- The x-coordinate is [tex]\(0\)[/tex] and the y-coordinate is [tex]\(-2\)[/tex].
- Since [tex]\(0 \neq -2\)[/tex], this point does not satisfy the condition [tex]\( x = y \)[/tex].
Checking the second point [tex]\((1, -1)\)[/tex]:
- The x-coordinate is [tex]\(1\)[/tex] and the y-coordinate is [tex]\(-1\)[/tex].
- Since [tex]\(1 \neq -1\)[/tex], this point also does not satisfy the condition [tex]\( x = y \)[/tex].
Hence, neither of the given points [tex]\((0, -2)\)[/tex] nor [tex]\((1, -1)\)[/tex] satisfy the condition required for the point of intersection between [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex].
Therefore, based on the provided choices,
there is no valid intersection point in the provided choices.
Given the two possible points of intersection:
1. [tex]\((0, -2)\)[/tex]
2. [tex]\((1, -1)\)[/tex]
We will check each point to see if it fits the form [tex]\((x, x)\)[/tex], meaning both coordinates are the same.
Checking the first point [tex]\((0, -2)\)[/tex]:
- The x-coordinate is [tex]\(0\)[/tex] and the y-coordinate is [tex]\(-2\)[/tex].
- Since [tex]\(0 \neq -2\)[/tex], this point does not satisfy the condition [tex]\( x = y \)[/tex].
Checking the second point [tex]\((1, -1)\)[/tex]:
- The x-coordinate is [tex]\(1\)[/tex] and the y-coordinate is [tex]\(-1\)[/tex].
- Since [tex]\(1 \neq -1\)[/tex], this point also does not satisfy the condition [tex]\( x = y \)[/tex].
Hence, neither of the given points [tex]\((0, -2)\)[/tex] nor [tex]\((1, -1)\)[/tex] satisfy the condition required for the point of intersection between [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex].
Therefore, based on the provided choices,
there is no valid intersection point in the provided choices.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.