Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the length of the hypotenuse in a 45-45-90 triangle where one leg is given as 6, we follow these steps:
1. Identify the properties of a 45-45-90 triangle:
- A 45-45-90 triangle is an isosceles right triangle, meaning the two legs are of equal length.
- The relationship between the legs [tex]\( a \)[/tex] and the hypotenuse [tex]\( c \)[/tex] in such a triangle is given by [tex]\( c = a\sqrt{2} \)[/tex].
2. Given information:
- The length of one leg is 6.
3. Applying the properties:
- Let the length of the leg be [tex]\( a = 6 \)[/tex].
4. Calculate the hypotenuse:
- Use the formula for the hypotenuse [tex]\( c \)[/tex] in a 45-45-90 triangle: [tex]\( c = a\sqrt{2} \)[/tex].
- Substitute [tex]\( a = 6 \)[/tex] into the formula: [tex]\( c = 6\sqrt{2} \)[/tex].
5. Simplify the expression:
- The hypotenuse length in exact form is [tex]\( 6\sqrt{2} \)[/tex].
6. Numerical value:
- Using [tex]\( \sqrt{2} \approx 1.414213562 \)[/tex], we get the numerical value for the hypotenuse, which is:
[tex]\( 6 \times 1.414213562 = 8.485281374 \)[/tex].
Therefore, the length of the hypotenuse, expressed in simplest radical form, is [tex]\( 6\sqrt{2} \)[/tex].
Thus, the correct answer from the provided options is:
[tex]\[ 6\sqrt{2} \][/tex]
1. Identify the properties of a 45-45-90 triangle:
- A 45-45-90 triangle is an isosceles right triangle, meaning the two legs are of equal length.
- The relationship between the legs [tex]\( a \)[/tex] and the hypotenuse [tex]\( c \)[/tex] in such a triangle is given by [tex]\( c = a\sqrt{2} \)[/tex].
2. Given information:
- The length of one leg is 6.
3. Applying the properties:
- Let the length of the leg be [tex]\( a = 6 \)[/tex].
4. Calculate the hypotenuse:
- Use the formula for the hypotenuse [tex]\( c \)[/tex] in a 45-45-90 triangle: [tex]\( c = a\sqrt{2} \)[/tex].
- Substitute [tex]\( a = 6 \)[/tex] into the formula: [tex]\( c = 6\sqrt{2} \)[/tex].
5. Simplify the expression:
- The hypotenuse length in exact form is [tex]\( 6\sqrt{2} \)[/tex].
6. Numerical value:
- Using [tex]\( \sqrt{2} \approx 1.414213562 \)[/tex], we get the numerical value for the hypotenuse, which is:
[tex]\( 6 \times 1.414213562 = 8.485281374 \)[/tex].
Therefore, the length of the hypotenuse, expressed in simplest radical form, is [tex]\( 6\sqrt{2} \)[/tex].
Thus, the correct answer from the provided options is:
[tex]\[ 6\sqrt{2} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.