Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve this compound interest problem step by step.
Given:
- Principal amount ([tex]\( P \)[/tex]) = [tex]$7,200 - Annual interest rate (\( r \)) = 2.3% (which is 0.023 in decimal form) - Number of times the interest is compounded per year (\( n \)) = 4 (quarterly) - Number of years (\( t \)) = 12 The formula for compound interest is: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] 1. Substitute the given values into the formula: \[ A = 7200 \left(1 + \frac{0.023}{4}\right)^{4 \times 12} \] 2. Simplify the expression inside the parentheses: \[ 1 + \frac{0.023}{4} = 1 + 0.00575 = 1.00575 \] 3. Raise this value to the power of \( 4 \times 12 \): \[ (1.00575)^{48} \] 4. Multiply the principal amount with the resulting value: \[ A = 7200 \times (1.00575)^{48} \] 5. Calculate the final amount: \[ A \approx 9481.007193983489 \] 6. Round the final amount to the nearest dollar: \[ A \approx 9481 \] So, after 12 years, Dylan would have approximately $[/tex]9,481 in the account.
Given:
- Principal amount ([tex]\( P \)[/tex]) = [tex]$7,200 - Annual interest rate (\( r \)) = 2.3% (which is 0.023 in decimal form) - Number of times the interest is compounded per year (\( n \)) = 4 (quarterly) - Number of years (\( t \)) = 12 The formula for compound interest is: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] 1. Substitute the given values into the formula: \[ A = 7200 \left(1 + \frac{0.023}{4}\right)^{4 \times 12} \] 2. Simplify the expression inside the parentheses: \[ 1 + \frac{0.023}{4} = 1 + 0.00575 = 1.00575 \] 3. Raise this value to the power of \( 4 \times 12 \): \[ (1.00575)^{48} \] 4. Multiply the principal amount with the resulting value: \[ A = 7200 \times (1.00575)^{48} \] 5. Calculate the final amount: \[ A \approx 9481.007193983489 \] 6. Round the final amount to the nearest dollar: \[ A \approx 9481 \] So, after 12 years, Dylan would have approximately $[/tex]9,481 in the account.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.