At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's work through this problem step by step.
### Step 1: Understand the Problem
We need to find the length of the chain of a swing that guarantees a centripetal acceleration of [tex]\( 21 \, \text{m/s}^2 \)[/tex] with a velocity of [tex]\( 13 \, \text{m/s} \)[/tex].
### Step 2: Recall the Formula for Centripetal Acceleration
The formula for centripetal acceleration is given by:
[tex]\[ a = \frac{v^2}{r} \][/tex]
where:
- [tex]\( a \)[/tex] is the centripetal acceleration,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( r \)[/tex] is the radius (the length of the chain in this case).
### Step 3: Substitute the Given Values
From the problem, we have:
- [tex]\( a = 21 \, \text{m/s}^2 \)[/tex],
- [tex]\( v = 13 \, \text{m/s} \)[/tex].
### Step 4: Rearrange the Formula to Solve for [tex]\( r \)[/tex]
Rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{v^2}{a} \][/tex]
### Step 5: Calculate the Radius
Substitute the given values into the rearranged formula:
[tex]\[ r = \frac{13^2}{21} \][/tex]
[tex]\[ r = \frac{169}{21} \][/tex]
### Step 6: Perform the Division
Now, perform the division to find the length of the chain:
[tex]\[ r \approx 8.0476 \, \text{m} \][/tex]
### Step 7: Compare with the Provided Options
Comparing the calculated length with the provided options:
A. [tex]\( 9.5 \, \text{m} \)[/tex]
B. [tex]\( 8.5 \, \text{m} \)[/tex]
C. [tex]\( 9.0 \, \text{m} \)[/tex]
D. [tex]\( 8.0 \, \text{m} \)[/tex]
The length of [tex]\( 8.0 \, \text{m} \)[/tex] is the closest match to our computed value of [tex]\( 8.0476 \, \text{m} \)[/tex].
### Final Answer:
D. [tex]\( 8.0 \, \text{m} \)[/tex]
So the chain on the swing should be approximately [tex]\( 8.0 \)[/tex] meters long.
### Step 1: Understand the Problem
We need to find the length of the chain of a swing that guarantees a centripetal acceleration of [tex]\( 21 \, \text{m/s}^2 \)[/tex] with a velocity of [tex]\( 13 \, \text{m/s} \)[/tex].
### Step 2: Recall the Formula for Centripetal Acceleration
The formula for centripetal acceleration is given by:
[tex]\[ a = \frac{v^2}{r} \][/tex]
where:
- [tex]\( a \)[/tex] is the centripetal acceleration,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( r \)[/tex] is the radius (the length of the chain in this case).
### Step 3: Substitute the Given Values
From the problem, we have:
- [tex]\( a = 21 \, \text{m/s}^2 \)[/tex],
- [tex]\( v = 13 \, \text{m/s} \)[/tex].
### Step 4: Rearrange the Formula to Solve for [tex]\( r \)[/tex]
Rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{v^2}{a} \][/tex]
### Step 5: Calculate the Radius
Substitute the given values into the rearranged formula:
[tex]\[ r = \frac{13^2}{21} \][/tex]
[tex]\[ r = \frac{169}{21} \][/tex]
### Step 6: Perform the Division
Now, perform the division to find the length of the chain:
[tex]\[ r \approx 8.0476 \, \text{m} \][/tex]
### Step 7: Compare with the Provided Options
Comparing the calculated length with the provided options:
A. [tex]\( 9.5 \, \text{m} \)[/tex]
B. [tex]\( 8.5 \, \text{m} \)[/tex]
C. [tex]\( 9.0 \, \text{m} \)[/tex]
D. [tex]\( 8.0 \, \text{m} \)[/tex]
The length of [tex]\( 8.0 \, \text{m} \)[/tex] is the closest match to our computed value of [tex]\( 8.0476 \, \text{m} \)[/tex].
### Final Answer:
D. [tex]\( 8.0 \, \text{m} \)[/tex]
So the chain on the swing should be approximately [tex]\( 8.0 \)[/tex] meters long.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.