Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's work through this problem step by step.
### Step 1: Understand the Problem
We need to find the length of the chain of a swing that guarantees a centripetal acceleration of [tex]\( 21 \, \text{m/s}^2 \)[/tex] with a velocity of [tex]\( 13 \, \text{m/s} \)[/tex].
### Step 2: Recall the Formula for Centripetal Acceleration
The formula for centripetal acceleration is given by:
[tex]\[ a = \frac{v^2}{r} \][/tex]
where:
- [tex]\( a \)[/tex] is the centripetal acceleration,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( r \)[/tex] is the radius (the length of the chain in this case).
### Step 3: Substitute the Given Values
From the problem, we have:
- [tex]\( a = 21 \, \text{m/s}^2 \)[/tex],
- [tex]\( v = 13 \, \text{m/s} \)[/tex].
### Step 4: Rearrange the Formula to Solve for [tex]\( r \)[/tex]
Rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{v^2}{a} \][/tex]
### Step 5: Calculate the Radius
Substitute the given values into the rearranged formula:
[tex]\[ r = \frac{13^2}{21} \][/tex]
[tex]\[ r = \frac{169}{21} \][/tex]
### Step 6: Perform the Division
Now, perform the division to find the length of the chain:
[tex]\[ r \approx 8.0476 \, \text{m} \][/tex]
### Step 7: Compare with the Provided Options
Comparing the calculated length with the provided options:
A. [tex]\( 9.5 \, \text{m} \)[/tex]
B. [tex]\( 8.5 \, \text{m} \)[/tex]
C. [tex]\( 9.0 \, \text{m} \)[/tex]
D. [tex]\( 8.0 \, \text{m} \)[/tex]
The length of [tex]\( 8.0 \, \text{m} \)[/tex] is the closest match to our computed value of [tex]\( 8.0476 \, \text{m} \)[/tex].
### Final Answer:
D. [tex]\( 8.0 \, \text{m} \)[/tex]
So the chain on the swing should be approximately [tex]\( 8.0 \)[/tex] meters long.
### Step 1: Understand the Problem
We need to find the length of the chain of a swing that guarantees a centripetal acceleration of [tex]\( 21 \, \text{m/s}^2 \)[/tex] with a velocity of [tex]\( 13 \, \text{m/s} \)[/tex].
### Step 2: Recall the Formula for Centripetal Acceleration
The formula for centripetal acceleration is given by:
[tex]\[ a = \frac{v^2}{r} \][/tex]
where:
- [tex]\( a \)[/tex] is the centripetal acceleration,
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( r \)[/tex] is the radius (the length of the chain in this case).
### Step 3: Substitute the Given Values
From the problem, we have:
- [tex]\( a = 21 \, \text{m/s}^2 \)[/tex],
- [tex]\( v = 13 \, \text{m/s} \)[/tex].
### Step 4: Rearrange the Formula to Solve for [tex]\( r \)[/tex]
Rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{v^2}{a} \][/tex]
### Step 5: Calculate the Radius
Substitute the given values into the rearranged formula:
[tex]\[ r = \frac{13^2}{21} \][/tex]
[tex]\[ r = \frac{169}{21} \][/tex]
### Step 6: Perform the Division
Now, perform the division to find the length of the chain:
[tex]\[ r \approx 8.0476 \, \text{m} \][/tex]
### Step 7: Compare with the Provided Options
Comparing the calculated length with the provided options:
A. [tex]\( 9.5 \, \text{m} \)[/tex]
B. [tex]\( 8.5 \, \text{m} \)[/tex]
C. [tex]\( 9.0 \, \text{m} \)[/tex]
D. [tex]\( 8.0 \, \text{m} \)[/tex]
The length of [tex]\( 8.0 \, \text{m} \)[/tex] is the closest match to our computed value of [tex]\( 8.0476 \, \text{m} \)[/tex].
### Final Answer:
D. [tex]\( 8.0 \, \text{m} \)[/tex]
So the chain on the swing should be approximately [tex]\( 8.0 \)[/tex] meters long.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.