At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's go through the process of completing the square for the equation [tex]\(x^2 + 8x - 3 = 0\)[/tex] step-by-step.
1. Start with the quadratic expression: [tex]\(x^2 + 8x - 3 = 0\)[/tex].
2. Focus on the quadratic and linear terms: [tex]\(x^2 + 8x\)[/tex]. We need to complete the square for this part.
3. Take the coefficient of the [tex]\(x\)[/tex] term (which is 8) and divide it by 2:
[tex]\[ \frac{8}{2} = 4 \][/tex]
4. Square this result:
[tex]\[ 4^2 = 16 \][/tex]
5. Now, add and subtract this square (16) inside the equation to complete the square:
[tex]\[ x^2 + 8x = (x^2 + 8x + 16) - 16 \][/tex]
6. Rewrite the quadratic part as a perfect square and incorporate the constants:
[tex]\[ (x^2 + 8x + 16) - 16 - 3 = 0 \][/tex]
Simplify the constants:
[tex]\[ (x + 4)^2 - 19 = 0 \][/tex]
Therefore, when completing the square, [tex]\(x^2 + 8x - 3 = 0\)[/tex] can be transformed into:
[tex]\[ (x + 4)^2 - 19 = 0 \][/tex]
So, the left side of the equation becomes the binomial squared:
[tex]\[ (x + 4)^2 \][/tex]
And, to fill in the blanks in the steps:
[tex]\( (x + 4)^2 = \ldots \)[/tex]
The result from completing the square is:
[tex]\[ (x + 4)^2 - 19 = 0 \][/tex]
1. Start with the quadratic expression: [tex]\(x^2 + 8x - 3 = 0\)[/tex].
2. Focus on the quadratic and linear terms: [tex]\(x^2 + 8x\)[/tex]. We need to complete the square for this part.
3. Take the coefficient of the [tex]\(x\)[/tex] term (which is 8) and divide it by 2:
[tex]\[ \frac{8}{2} = 4 \][/tex]
4. Square this result:
[tex]\[ 4^2 = 16 \][/tex]
5. Now, add and subtract this square (16) inside the equation to complete the square:
[tex]\[ x^2 + 8x = (x^2 + 8x + 16) - 16 \][/tex]
6. Rewrite the quadratic part as a perfect square and incorporate the constants:
[tex]\[ (x^2 + 8x + 16) - 16 - 3 = 0 \][/tex]
Simplify the constants:
[tex]\[ (x + 4)^2 - 19 = 0 \][/tex]
Therefore, when completing the square, [tex]\(x^2 + 8x - 3 = 0\)[/tex] can be transformed into:
[tex]\[ (x + 4)^2 - 19 = 0 \][/tex]
So, the left side of the equation becomes the binomial squared:
[tex]\[ (x + 4)^2 \][/tex]
And, to fill in the blanks in the steps:
[tex]\( (x + 4)^2 = \ldots \)[/tex]
The result from completing the square is:
[tex]\[ (x + 4)^2 - 19 = 0 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.