At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's go through the process of rearranging the scientific formula for density and solving both parts of the problem step-by-step.
### Understanding the Density Formula
The general formula for density [tex]\(D\)[/tex] is expressed as:
[tex]\[ D = \frac{m}{V} \][/tex]
where:
- [tex]\(D\)[/tex] is the density in [tex]\(kg/m^3\)[/tex],
- [tex]\(m\)[/tex] is the mass in kilograms (kg),
- [tex]\(V\)[/tex] is the volume in cubic meters ([tex]\(m^3\)[/tex]).
This formula can be rearranged to solve for either [tex]\(m\)[/tex] (mass) or [tex]\(V\)[/tex] (volume).
### Example 1 - Part (A)
Question: A sinker on a fishing line is made of lead and has a volume of [tex]\(0.000015 m^3\)[/tex]. What is the mass of the sinker?
Given:
- Density of lead ([tex]\(D_{\text{lead}}\)[/tex]) = 11340 [tex]\(kg/m^3\)[/tex]
- Volume of lead ([tex]\(V_{\text{lead}}\)[/tex]) = 0.000015 [tex]\(m^3\)[/tex]
Step-by-step solution:
1. Start with the density formula:
[tex]\[ D = \frac{m}{V} \][/tex]
2. Rearrange the formula to solve for mass ([tex]\(m\)[/tex]):
[tex]\[ m = D \times V \][/tex]
3. Substitute the given values into the formula:
[tex]\[ m = 11340 \, \text{kg/m}^3 \times 0.000015 \, \text{m}^3 \][/tex]
4. Perform the multiplication:
[tex]\[ m = 0.1701 \, \text{kg} \][/tex]
So, the mass of the lead sinker is approximately [tex]\(0.1701\)[/tex] kilograms.
### Example 1 - Part (B)
Question: The design for a life preserver requires 0.3 kilograms of plastic foam to provide proper buoyancy. What is the volume of the plastic foam required?
Given:
- Density of plastic foam ([tex]\(D_{\text{foam}}\)[/tex]) = 75 [tex]\(kg/m^3\)[/tex]
- Mass of plastic foam ([tex]\(m_{\text{foam}}\)[/tex]) = 0.3 [tex]\(kg\)[/tex]
Step-by-step solution:
1. Start with the density formula:
[tex]\[ D = \frac{m}{V} \][/tex]
2. Rearrange the formula to solve for volume ([tex]\(V\)[/tex]):
[tex]\[ V = \frac{m}{D} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ V = \frac{0.3 \, \text{kg}}{75 \, \text{kg/m}^3} \][/tex]
4. Perform the division:
[tex]\[ V = 0.004 \, \text{m}^3 \][/tex]
So, the volume of the plastic foam required is [tex]\(0.004\)[/tex] cubic meters.
### Summary
(A) The mass of the lead sinker is [tex]\(0.1701\)[/tex] kilograms.
(B) The volume of the plastic foam required for the life preserver is [tex]\(0.004\)[/tex] cubic meters.
### Understanding the Density Formula
The general formula for density [tex]\(D\)[/tex] is expressed as:
[tex]\[ D = \frac{m}{V} \][/tex]
where:
- [tex]\(D\)[/tex] is the density in [tex]\(kg/m^3\)[/tex],
- [tex]\(m\)[/tex] is the mass in kilograms (kg),
- [tex]\(V\)[/tex] is the volume in cubic meters ([tex]\(m^3\)[/tex]).
This formula can be rearranged to solve for either [tex]\(m\)[/tex] (mass) or [tex]\(V\)[/tex] (volume).
### Example 1 - Part (A)
Question: A sinker on a fishing line is made of lead and has a volume of [tex]\(0.000015 m^3\)[/tex]. What is the mass of the sinker?
Given:
- Density of lead ([tex]\(D_{\text{lead}}\)[/tex]) = 11340 [tex]\(kg/m^3\)[/tex]
- Volume of lead ([tex]\(V_{\text{lead}}\)[/tex]) = 0.000015 [tex]\(m^3\)[/tex]
Step-by-step solution:
1. Start with the density formula:
[tex]\[ D = \frac{m}{V} \][/tex]
2. Rearrange the formula to solve for mass ([tex]\(m\)[/tex]):
[tex]\[ m = D \times V \][/tex]
3. Substitute the given values into the formula:
[tex]\[ m = 11340 \, \text{kg/m}^3 \times 0.000015 \, \text{m}^3 \][/tex]
4. Perform the multiplication:
[tex]\[ m = 0.1701 \, \text{kg} \][/tex]
So, the mass of the lead sinker is approximately [tex]\(0.1701\)[/tex] kilograms.
### Example 1 - Part (B)
Question: The design for a life preserver requires 0.3 kilograms of plastic foam to provide proper buoyancy. What is the volume of the plastic foam required?
Given:
- Density of plastic foam ([tex]\(D_{\text{foam}}\)[/tex]) = 75 [tex]\(kg/m^3\)[/tex]
- Mass of plastic foam ([tex]\(m_{\text{foam}}\)[/tex]) = 0.3 [tex]\(kg\)[/tex]
Step-by-step solution:
1. Start with the density formula:
[tex]\[ D = \frac{m}{V} \][/tex]
2. Rearrange the formula to solve for volume ([tex]\(V\)[/tex]):
[tex]\[ V = \frac{m}{D} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ V = \frac{0.3 \, \text{kg}}{75 \, \text{kg/m}^3} \][/tex]
4. Perform the division:
[tex]\[ V = 0.004 \, \text{m}^3 \][/tex]
So, the volume of the plastic foam required is [tex]\(0.004\)[/tex] cubic meters.
### Summary
(A) The mass of the lead sinker is [tex]\(0.1701\)[/tex] kilograms.
(B) The volume of the plastic foam required for the life preserver is [tex]\(0.004\)[/tex] cubic meters.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.