Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's solve the problem step-by-step.
We are given the balanced chemical equation:
[tex]\[2 Al_2O_3 \rightarrow 4 Al + 3 O_2 \][/tex]
We need to calculate how many moles of aluminum [tex]\((Al)\)[/tex] can be produced from 5.00 moles of aluminum oxide [tex]\((Al_2O_3)\)[/tex].
1. Understanding the stoichiometry: The balanced equation shows that 2 moles of [tex]\(Al_2O_3\)[/tex] produce 4 moles of [tex]\(Al\)[/tex]. This gives us a mole ratio of:
[tex]\[\frac{4 \text{ moles } Al}{2 \text{ moles } Al_2O_3} = 2 \][/tex]
2. Applying the ratio to the given amount: We have 5.00 moles of [tex]\(Al_2O_3\)[/tex]. Using the mole ratio from the equation, we can set up the following relationship:
[tex]\[ \text{moles of } Al = \text{moles of } Al_2O_3 \times \left( \frac{4 \, \text{moles } Al}{2 \text{ moles } Al_2O_3} \right) \][/tex]
[tex]\[ \text{moles of } Al = 5.00 \, \text{moles } Al_2O_3 \times 2 \][/tex]
3. Calculation:
[tex]\[ \text{moles of } Al = 5.00 \times 2 = 10.0 \text{ moles } Al \][/tex]
Therefore, 10.0 moles of aluminum are produced from 5.00 moles of aluminum oxide.
The correct answer is:
[tex]\[ \boxed{10 \text{ mol}} \][/tex]
We are given the balanced chemical equation:
[tex]\[2 Al_2O_3 \rightarrow 4 Al + 3 O_2 \][/tex]
We need to calculate how many moles of aluminum [tex]\((Al)\)[/tex] can be produced from 5.00 moles of aluminum oxide [tex]\((Al_2O_3)\)[/tex].
1. Understanding the stoichiometry: The balanced equation shows that 2 moles of [tex]\(Al_2O_3\)[/tex] produce 4 moles of [tex]\(Al\)[/tex]. This gives us a mole ratio of:
[tex]\[\frac{4 \text{ moles } Al}{2 \text{ moles } Al_2O_3} = 2 \][/tex]
2. Applying the ratio to the given amount: We have 5.00 moles of [tex]\(Al_2O_3\)[/tex]. Using the mole ratio from the equation, we can set up the following relationship:
[tex]\[ \text{moles of } Al = \text{moles of } Al_2O_3 \times \left( \frac{4 \, \text{moles } Al}{2 \text{ moles } Al_2O_3} \right) \][/tex]
[tex]\[ \text{moles of } Al = 5.00 \, \text{moles } Al_2O_3 \times 2 \][/tex]
3. Calculation:
[tex]\[ \text{moles of } Al = 5.00 \times 2 = 10.0 \text{ moles } Al \][/tex]
Therefore, 10.0 moles of aluminum are produced from 5.00 moles of aluminum oxide.
The correct answer is:
[tex]\[ \boxed{10 \text{ mol}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.