Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which equation represents the sequence of diameters given by [tex]\(2.5 \, \text{cm}, 3.1 \, \text{cm}, 3.7 \, \text{cm}, 4.3 \, \text{cm}\)[/tex], we can follow a step-by-step analysis.
### Step 1: Identify the Pattern
First, let's observe the changes between consecutive terms to identify any pattern:
1. Between 2.5 and 3.1:
[tex]\(3.1 - 2.5 = 0.6\)[/tex]
2. Between 3.1 and 3.7:
[tex]\(3.7 - 3.1 = 0.6\)[/tex]
3. Between 3.7 and 4.3:
[tex]\(4.3 - 3.7 = 0.6\)[/tex]
We can see that each term increases by a constant difference of [tex]\(0.6\)[/tex]. This suggests that the sequence of diameters is an arithmetic sequence.
### Step 2: Determine the Initial Term and Common Difference
In an arithmetic sequence, the terms are given by:
[tex]\[ a, a+d, a+2d, a+3d, \ldots \][/tex]
Here:
- The initial term ([tex]\(a\)[/tex]) is [tex]\(2.5\)[/tex] cm.
- The common difference ([tex]\(d\)[/tex]) is [tex]\(0.6\)[/tex] cm.
### Step 3: Write the Equation for the nth Term
The general formula for the nth term of an arithmetic sequence is given by:
[tex]\[ f(n) = a + (n-1)d \][/tex]
Substituting the values of [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
[tex]\[ f(n) = 2.5 + (n-1) \times 0.6 \][/tex]
Simplifying this:
[tex]\[ f(n) = 2.5 + 0.6n - 0.6 \][/tex]
[tex]\[ f(n) = 0.6n + 1.9 \][/tex]
### Step 4: Compare with Given Options
The equation that represents our sequence is:
[tex]\[ f(n) = 0.6n + 1.9 \][/tex]
This matches the first option in the provided choices:
[tex]\[ \begin{array}{l} f(n) = 0.6n + 1.9 \\ f(n) = 0.6n + 2.5 \\ f(n+1) = f(n) + 1.9 \\ f(n+1) = f(n) - 0.6 \\ \end{array} \][/tex]
### Conclusion
Therefore, the equation that represents the sequence of diameters is:
[tex]\[ \boxed{f(n) = 0.6n + 1.9} \][/tex]
### Step 1: Identify the Pattern
First, let's observe the changes between consecutive terms to identify any pattern:
1. Between 2.5 and 3.1:
[tex]\(3.1 - 2.5 = 0.6\)[/tex]
2. Between 3.1 and 3.7:
[tex]\(3.7 - 3.1 = 0.6\)[/tex]
3. Between 3.7 and 4.3:
[tex]\(4.3 - 3.7 = 0.6\)[/tex]
We can see that each term increases by a constant difference of [tex]\(0.6\)[/tex]. This suggests that the sequence of diameters is an arithmetic sequence.
### Step 2: Determine the Initial Term and Common Difference
In an arithmetic sequence, the terms are given by:
[tex]\[ a, a+d, a+2d, a+3d, \ldots \][/tex]
Here:
- The initial term ([tex]\(a\)[/tex]) is [tex]\(2.5\)[/tex] cm.
- The common difference ([tex]\(d\)[/tex]) is [tex]\(0.6\)[/tex] cm.
### Step 3: Write the Equation for the nth Term
The general formula for the nth term of an arithmetic sequence is given by:
[tex]\[ f(n) = a + (n-1)d \][/tex]
Substituting the values of [tex]\(a\)[/tex] and [tex]\(d\)[/tex]:
[tex]\[ f(n) = 2.5 + (n-1) \times 0.6 \][/tex]
Simplifying this:
[tex]\[ f(n) = 2.5 + 0.6n - 0.6 \][/tex]
[tex]\[ f(n) = 0.6n + 1.9 \][/tex]
### Step 4: Compare with Given Options
The equation that represents our sequence is:
[tex]\[ f(n) = 0.6n + 1.9 \][/tex]
This matches the first option in the provided choices:
[tex]\[ \begin{array}{l} f(n) = 0.6n + 1.9 \\ f(n) = 0.6n + 2.5 \\ f(n+1) = f(n) + 1.9 \\ f(n+1) = f(n) - 0.6 \\ \end{array} \][/tex]
### Conclusion
Therefore, the equation that represents the sequence of diameters is:
[tex]\[ \boxed{f(n) = 0.6n + 1.9} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.