Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\( x^2 = 5 - x \)[/tex] using the quadratic formula, let's follow the steps below in a detailed manner:
1. Rewrite the equation in standard form:
[tex]\[ x^2 + x - 5 = 0 \][/tex]
In this form, we can identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] for the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ a = 1, \quad b = 1, \quad c = -5 \][/tex]
2. Apply the quadratic formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
3. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ x = \frac{-(1) \pm \sqrt{(1)^2 - 4(1)(-5)}}{2(1)} \][/tex]
4. Simplify inside the square root:
[tex]\[ b^2 - 4ac = 1^2 - 4(1)(-5) = 1 + 20 = 21 \][/tex]
5. Plug this back into the formula:
[tex]\[ x = \frac{-1 \pm \sqrt{21}}{2} \][/tex]
Thus, the solutions to the equation are:
[tex]\[ x = \frac{-1 + \sqrt{21}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{21}}{2} \][/tex]
Conclusion:
The values of [tex]\( x \)[/tex] that satisfy the equation [tex]\(x^2 = 5 - x\)[/tex] are:
[tex]\[ \boxed{\frac{-1 \pm \sqrt{21}}{2}} \][/tex]
1. Rewrite the equation in standard form:
[tex]\[ x^2 + x - 5 = 0 \][/tex]
In this form, we can identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] for the quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ a = 1, \quad b = 1, \quad c = -5 \][/tex]
2. Apply the quadratic formula:
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
3. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:
[tex]\[ x = \frac{-(1) \pm \sqrt{(1)^2 - 4(1)(-5)}}{2(1)} \][/tex]
4. Simplify inside the square root:
[tex]\[ b^2 - 4ac = 1^2 - 4(1)(-5) = 1 + 20 = 21 \][/tex]
5. Plug this back into the formula:
[tex]\[ x = \frac{-1 \pm \sqrt{21}}{2} \][/tex]
Thus, the solutions to the equation are:
[tex]\[ x = \frac{-1 + \sqrt{21}}{2} \quad \text{and} \quad x = \frac{-1 - \sqrt{21}}{2} \][/tex]
Conclusion:
The values of [tex]\( x \)[/tex] that satisfy the equation [tex]\(x^2 = 5 - x\)[/tex] are:
[tex]\[ \boxed{\frac{-1 \pm \sqrt{21}}{2}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.