At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the expression step by step:
[tex]\[ \frac{x+1}{2} - \frac{x-2}{3} \][/tex]
### Step 1: Identify the Least Common Denominator (LCD)
First, we need to find the least common denominator of the fractions. The denominators of the fractions are 2 and 3. The least common multiple (LCM) of 2 and 3 is 6. Thus, the LCD is 6.
### Step 2: Convert Each Fraction to Have the LCD as Denominator
We will convert each fraction to have the denominator of 6.
For the first fraction:
[tex]\[ \frac{x+1}{2} = \frac{x+1}{2} \times \frac{3}{3} = \frac{3(x+1)}{6} = \frac{3x + 3}{6} \][/tex]
For the second fraction:
[tex]\[ \frac{x-2}{3} = \frac{x-2}{3} \times \frac{2}{2} = \frac{2(x-2)}{6} = \frac{2x - 4}{6} \][/tex]
### Step 3: Subtract the Fractions with a Common Denominator
Now that both fractions have the same denominator, we can subtract them:
[tex]\[ \frac{3x + 3}{6} - \frac{2x - 4}{6} \][/tex]
Since the denominators are the same, we can combine the numerators:
[tex]\[ \frac{(3x + 3) - (2x - 4)}{6} \][/tex]
### Step 4: Simplify the Numerator
Simplify the expression in the numerator:
[tex]\[ (3x + 3) - (2x - 4) = 3x + 3 - 2x + 4 = 3x - 2x + 3 + 4 = x + 7 \][/tex]
### Step 5: Write the Final Answer
The simplified expression is:
[tex]\[ \frac{x + 7}{6} \][/tex]
Hence, the solution to the given expression [tex]\(\frac{x+1}{2} - \frac{x-2}{3}\)[/tex] is:
[tex]\[ \frac{x + 7}{6} \][/tex]
[tex]\[ \frac{x+1}{2} - \frac{x-2}{3} \][/tex]
### Step 1: Identify the Least Common Denominator (LCD)
First, we need to find the least common denominator of the fractions. The denominators of the fractions are 2 and 3. The least common multiple (LCM) of 2 and 3 is 6. Thus, the LCD is 6.
### Step 2: Convert Each Fraction to Have the LCD as Denominator
We will convert each fraction to have the denominator of 6.
For the first fraction:
[tex]\[ \frac{x+1}{2} = \frac{x+1}{2} \times \frac{3}{3} = \frac{3(x+1)}{6} = \frac{3x + 3}{6} \][/tex]
For the second fraction:
[tex]\[ \frac{x-2}{3} = \frac{x-2}{3} \times \frac{2}{2} = \frac{2(x-2)}{6} = \frac{2x - 4}{6} \][/tex]
### Step 3: Subtract the Fractions with a Common Denominator
Now that both fractions have the same denominator, we can subtract them:
[tex]\[ \frac{3x + 3}{6} - \frac{2x - 4}{6} \][/tex]
Since the denominators are the same, we can combine the numerators:
[tex]\[ \frac{(3x + 3) - (2x - 4)}{6} \][/tex]
### Step 4: Simplify the Numerator
Simplify the expression in the numerator:
[tex]\[ (3x + 3) - (2x - 4) = 3x + 3 - 2x + 4 = 3x - 2x + 3 + 4 = x + 7 \][/tex]
### Step 5: Write the Final Answer
The simplified expression is:
[tex]\[ \frac{x + 7}{6} \][/tex]
Hence, the solution to the given expression [tex]\(\frac{x+1}{2} - \frac{x-2}{3}\)[/tex] is:
[tex]\[ \frac{x + 7}{6} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.