Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the given problem step by step:
### 1. Finding the value of [tex]\(6!\)[/tex]:
To find the number of ways six people can be placed in a line for a photo, we use the factorial notation [tex]\(6!\)[/tex], which means multiplying all whole numbers from 1 to 6. Therefore, the calculation is as follows:
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \][/tex]
So, the value of [tex]\(6!\)[/tex] is:
[tex]\[ \boxed{720} \][/tex]
### 2. Finding the number of ways to choose two people for specific roles:
When choosing two out of six people to perform specific roles (where order matters), we use permutations. The expression provided is:
[tex]\[ \frac{6!}{(6-2)!} \][/tex]
Let's simplify this:
[tex]\[ \frac{6!}{4!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} = 6 \times 5 = 30 \][/tex]
So, the number of ways to choose the two people is:
[tex]\[ \boxed{30} \][/tex]
### 3. Finding the number of ways to choose a group of three people:
To determine the number of ways to choose a group of three people from six (where the order does not matter), we use combinations. The expression given is:
[tex]\[ \binom{6}{3} = \frac{6!}{(6-3)! \times 3!} \][/tex]
Let's simplify this:
[tex]\[ \binom{6}{3} = \frac{6!}{3! \times 3!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 3 \times 2 \times 1} = \frac{720}{6 \times 6} = \frac{720}{36} = 20 \][/tex]
So, the number of ways to choose the group of three people is:
[tex]\[ \boxed{20} \][/tex]
### 1. Finding the value of [tex]\(6!\)[/tex]:
To find the number of ways six people can be placed in a line for a photo, we use the factorial notation [tex]\(6!\)[/tex], which means multiplying all whole numbers from 1 to 6. Therefore, the calculation is as follows:
[tex]\[ 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720 \][/tex]
So, the value of [tex]\(6!\)[/tex] is:
[tex]\[ \boxed{720} \][/tex]
### 2. Finding the number of ways to choose two people for specific roles:
When choosing two out of six people to perform specific roles (where order matters), we use permutations. The expression provided is:
[tex]\[ \frac{6!}{(6-2)!} \][/tex]
Let's simplify this:
[tex]\[ \frac{6!}{4!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{4 \times 3 \times 2 \times 1} = 6 \times 5 = 30 \][/tex]
So, the number of ways to choose the two people is:
[tex]\[ \boxed{30} \][/tex]
### 3. Finding the number of ways to choose a group of three people:
To determine the number of ways to choose a group of three people from six (where the order does not matter), we use combinations. The expression given is:
[tex]\[ \binom{6}{3} = \frac{6!}{(6-3)! \times 3!} \][/tex]
Let's simplify this:
[tex]\[ \binom{6}{3} = \frac{6!}{3! \times 3!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 3 \times 2 \times 1} = \frac{720}{6 \times 6} = \frac{720}{36} = 20 \][/tex]
So, the number of ways to choose the group of three people is:
[tex]\[ \boxed{20} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.