Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the theoretical probability that a slip of paper chosen at random from the ones numbered 1 to 15 will be an even number, we need to follow these steps:
1. Identify the total number of slips of paper: These slips are numbered from 1 to 15, so the total number of paper slips is 15.
2. Identify the even numbers from 1 to 15: These are the numbers divisible by 2.
- The even numbers are: 2, 4, 6, 8, 10, 12, and 14.
3. Count the total number of even slips of paper:
- From our list, the even slips are: 2, 4, 6, 8, 10, 12, and 14.
- There are 7 even numbers in total.
4. Compute the probability:
- Probability is calculated as the number of favorable outcomes divided by the total number of outcomes.
- Here, the number of favorable outcomes (even numbers) is 7.
- The total number of outcomes (total slips) is 15.
Therefore, the probability [tex]\( P \)[/tex] that a randomly chosen slip is an even number is given by:
[tex]\[ P(\text{even number}) = \frac{\text{number of even slips}}{\text{total number of slips}} = \frac{7}{15} \][/tex]
Hence, the theoretical probability that a slip of paper chosen at random will be an even number is [tex]\( \frac{7}{15} \)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{\frac{7}{15}} \][/tex]
1. Identify the total number of slips of paper: These slips are numbered from 1 to 15, so the total number of paper slips is 15.
2. Identify the even numbers from 1 to 15: These are the numbers divisible by 2.
- The even numbers are: 2, 4, 6, 8, 10, 12, and 14.
3. Count the total number of even slips of paper:
- From our list, the even slips are: 2, 4, 6, 8, 10, 12, and 14.
- There are 7 even numbers in total.
4. Compute the probability:
- Probability is calculated as the number of favorable outcomes divided by the total number of outcomes.
- Here, the number of favorable outcomes (even numbers) is 7.
- The total number of outcomes (total slips) is 15.
Therefore, the probability [tex]\( P \)[/tex] that a randomly chosen slip is an even number is given by:
[tex]\[ P(\text{even number}) = \frac{\text{number of even slips}}{\text{total number of slips}} = \frac{7}{15} \][/tex]
Hence, the theoretical probability that a slip of paper chosen at random will be an even number is [tex]\( \frac{7}{15} \)[/tex]. Therefore, the correct answer is:
[tex]\[ \boxed{\frac{7}{15}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.