Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, let's break it down step by step:
### Step 1: Understanding the problem
The problem involves finding the correct quadratic equation for the area of a rectangular pen given its width and a total fencing of 100 meters. Additionally, we need to determine the dimensions of the rectangle that maximize this area.
### Step 2: Determine the perimeter relationship
The total perimeter (P) of the rectangle is given by:
[tex]\[ P = 2L + 2W \][/tex]
where [tex]\( L \)[/tex] is the length and [tex]\( W \)[/tex] is the width. The perimeter is given as 100 meters, so:
[tex]\[ 2L + 2W = 100 \][/tex]
Divide both sides by 2:
[tex]\[ L + W = 50 \][/tex]
Solving for [tex]\( L \)[/tex] in terms of [tex]\( W \)[/tex]:
[tex]\[ L = 50 - W \][/tex]
### Step 3: Express the area in terms of width
The area [tex]\( A \)[/tex] of the rectangle is given by:
[tex]\[ A = L \times W \][/tex]
Substituting [tex]\( L \)[/tex] from the previous step:
[tex]\[ A = (50 - W) \times W \][/tex]
[tex]\[ A = 50W - W^2 \][/tex]
### Step 4: Identify the quadratic equation
From the expression [tex]\( A = 50W - W^2 \)[/tex], we see that the correct option from the provided choices is:
[tex]\[ A(w) = 50w - w^2 \][/tex]
### Step 5: Determine the dimensions that maximize the area
The quadratic equation [tex]\( A(w) = 50w - w^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( w^2 \)[/tex] is negative). The width [tex]\( w \)[/tex] that maximizes the area is found at the vertex of the parabola.
For a quadratic equation [tex]\( ax^2 + bx + c \)[/tex], the vertex occurs at:
[tex]\[ w = -\frac{b}{2a} \][/tex]
In our equation, [tex]\( A(w) = -w^2 + 50w \)[/tex], we have [tex]\( a = -1 \)[/tex] and [tex]\( b = 50 \)[/tex].
Thus, the width that maximizes the area is:
[tex]\[ w = -\frac{50}{2(-1)} \][/tex]
[tex]\[ w = \frac{50}{2} \][/tex]
[tex]\[ w = 25 \, \text{meters} \][/tex]
### Step 6: Calculate the corresponding length
Using the relationship [tex]\( L = 50 - W \)[/tex]:
[tex]\[ L = 50 - 25 \][/tex]
[tex]\[ L = 25 \, \text{meters} \][/tex]
### Final answer
The length and width of the greatest rectangular area that the farmer can enclose with 100 meters of fencing are both 25 meters.
Therefore, the length is [tex]\( 25 \, \text{m} \)[/tex] and the width is [tex]\( 25 \, \text{m} \)[/tex].
### Step 1: Understanding the problem
The problem involves finding the correct quadratic equation for the area of a rectangular pen given its width and a total fencing of 100 meters. Additionally, we need to determine the dimensions of the rectangle that maximize this area.
### Step 2: Determine the perimeter relationship
The total perimeter (P) of the rectangle is given by:
[tex]\[ P = 2L + 2W \][/tex]
where [tex]\( L \)[/tex] is the length and [tex]\( W \)[/tex] is the width. The perimeter is given as 100 meters, so:
[tex]\[ 2L + 2W = 100 \][/tex]
Divide both sides by 2:
[tex]\[ L + W = 50 \][/tex]
Solving for [tex]\( L \)[/tex] in terms of [tex]\( W \)[/tex]:
[tex]\[ L = 50 - W \][/tex]
### Step 3: Express the area in terms of width
The area [tex]\( A \)[/tex] of the rectangle is given by:
[tex]\[ A = L \times W \][/tex]
Substituting [tex]\( L \)[/tex] from the previous step:
[tex]\[ A = (50 - W) \times W \][/tex]
[tex]\[ A = 50W - W^2 \][/tex]
### Step 4: Identify the quadratic equation
From the expression [tex]\( A = 50W - W^2 \)[/tex], we see that the correct option from the provided choices is:
[tex]\[ A(w) = 50w - w^2 \][/tex]
### Step 5: Determine the dimensions that maximize the area
The quadratic equation [tex]\( A(w) = 50w - w^2 \)[/tex] represents a parabola that opens downwards (since the coefficient of [tex]\( w^2 \)[/tex] is negative). The width [tex]\( w \)[/tex] that maximizes the area is found at the vertex of the parabola.
For a quadratic equation [tex]\( ax^2 + bx + c \)[/tex], the vertex occurs at:
[tex]\[ w = -\frac{b}{2a} \][/tex]
In our equation, [tex]\( A(w) = -w^2 + 50w \)[/tex], we have [tex]\( a = -1 \)[/tex] and [tex]\( b = 50 \)[/tex].
Thus, the width that maximizes the area is:
[tex]\[ w = -\frac{50}{2(-1)} \][/tex]
[tex]\[ w = \frac{50}{2} \][/tex]
[tex]\[ w = 25 \, \text{meters} \][/tex]
### Step 6: Calculate the corresponding length
Using the relationship [tex]\( L = 50 - W \)[/tex]:
[tex]\[ L = 50 - 25 \][/tex]
[tex]\[ L = 25 \, \text{meters} \][/tex]
### Final answer
The length and width of the greatest rectangular area that the farmer can enclose with 100 meters of fencing are both 25 meters.
Therefore, the length is [tex]\( 25 \, \text{m} \)[/tex] and the width is [tex]\( 25 \, \text{m} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.