Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To fit a logistic equation [tex]\( N(t) = \frac{c}{1 + a e^{-b t}} \)[/tex] to the given data of time [tex]\( t \)[/tex] and the number of people [tex]\( N(t) \)[/tex] who have heard the rumor, we follow these steps:
1. Understand the Logistic Model:
The logistic model used to fit the data is:
[tex]\[ N(t) = \frac{c}{1 + a e^{-b t}} \][/tex]
where [tex]\( c \)[/tex], [tex]\( a \)[/tex], and [tex]\( b \)[/tex] are the parameters that we need to determine through regression.
2. Given Data:
[tex]\[ \begin{array}{l|llllllllllll} \text{Time, } t \text{ (in days)} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Number, } N \text{ Who Have Heard} & 1 & 2 & 3 & 6 & 14 & 18 & 22 & 24 & 28 & 28 & 29 & 30 \end{array} \][/tex]
3. Perform Regression Analysis:
To find the parameters [tex]\( c \)[/tex], [tex]\( a \)[/tex], and [tex]\( b \)[/tex] that best fit the data, we apply logistic regression. The fitting process finds values of [tex]\( c \)[/tex], [tex]\( a \)[/tex], and [tex]\( b \)[/tex] such that the difference between the actual data points [tex]\( N(t) \)[/tex] and the logistic equation is minimized.
4. Solution Parameters:
After performing the regression analysis, we find the following rounded values for the parameters:
[tex]\[ c = 29.336, \quad a = 62.883, \quad b = 0.758 \][/tex]
5. Final Logistic Equation:
Using the calculated values of [tex]\( c \)[/tex], [tex]\( a \)[/tex], and [tex]\( b \)[/tex], the logistic equation fits the given data as:
[tex]\[ N(t) = \frac{29.336}{1 + 62.883 e^{-0.758 t}} \][/tex]
Thus, the logistic equation that fits the data is:
[tex]\[ N(t) = \frac{29.336}{1 + 62.883 e^{-0.758 t}} \][/tex]
When expressed in the format requested in the problem statement, our logistic equation becomes:
[tex]\[ N(t) = \frac{29.336}{1 + e^{-0.758 \cdot t}} \][/tex]
1. Understand the Logistic Model:
The logistic model used to fit the data is:
[tex]\[ N(t) = \frac{c}{1 + a e^{-b t}} \][/tex]
where [tex]\( c \)[/tex], [tex]\( a \)[/tex], and [tex]\( b \)[/tex] are the parameters that we need to determine through regression.
2. Given Data:
[tex]\[ \begin{array}{l|llllllllllll} \text{Time, } t \text{ (in days)} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline \text{Number, } N \text{ Who Have Heard} & 1 & 2 & 3 & 6 & 14 & 18 & 22 & 24 & 28 & 28 & 29 & 30 \end{array} \][/tex]
3. Perform Regression Analysis:
To find the parameters [tex]\( c \)[/tex], [tex]\( a \)[/tex], and [tex]\( b \)[/tex] that best fit the data, we apply logistic regression. The fitting process finds values of [tex]\( c \)[/tex], [tex]\( a \)[/tex], and [tex]\( b \)[/tex] such that the difference between the actual data points [tex]\( N(t) \)[/tex] and the logistic equation is minimized.
4. Solution Parameters:
After performing the regression analysis, we find the following rounded values for the parameters:
[tex]\[ c = 29.336, \quad a = 62.883, \quad b = 0.758 \][/tex]
5. Final Logistic Equation:
Using the calculated values of [tex]\( c \)[/tex], [tex]\( a \)[/tex], and [tex]\( b \)[/tex], the logistic equation fits the given data as:
[tex]\[ N(t) = \frac{29.336}{1 + 62.883 e^{-0.758 t}} \][/tex]
Thus, the logistic equation that fits the data is:
[tex]\[ N(t) = \frac{29.336}{1 + 62.883 e^{-0.758 t}} \][/tex]
When expressed in the format requested in the problem statement, our logistic equation becomes:
[tex]\[ N(t) = \frac{29.336}{1 + e^{-0.758 \cdot t}} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.