At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the inequality [tex]\(-9 < 3n \leq 12\)[/tex], we will break it down into two separate inequalities and solve each part individually.
1. Solve the first part of the inequality: [tex]\(-9 < 3n\)[/tex]
- Divide both sides by 3 to isolate [tex]\(n\)[/tex]:
[tex]\[ -9 < 3n \implies \frac{-9}{3} < n \implies -3 < n \][/tex]
2. Solve the second part of the inequality: [tex]\(3n \leq 12\)[/tex]
- Divide both sides by 3 to isolate [tex]\(n\)[/tex]:
[tex]\[ 3n \leq 12 \implies n \leq \frac{12}{3} \implies n \leq 4 \][/tex]
3. Combine both parts of the inequality:
- From the first part, we have [tex]\(n > -3\)[/tex]
- From the second part, we have [tex]\(n \leq 4\)[/tex]
- Combining these results gives:
[tex]\[ -3 < n \leq 4 \][/tex]
4. Identify the integer solutions:
Since [tex]\(n\)[/tex] is an integer, we need to list all integer values that satisfy [tex]\(-3 < n \leq 4\)[/tex]. The integers that are greater than [tex]\(-3\)[/tex] and less than or equal to [tex]\(4\)[/tex] are:
[tex]\[ -2, -1, 0, 1, 2, 3, 4 \][/tex]
Therefore, the integer values of [tex]\(n\)[/tex] that satisfy the inequality [tex]\(-9 < 3n \leq 12\)[/tex] are [tex]\(-2, -1, 0, 1, 2, 3, 4\)[/tex].
1. Solve the first part of the inequality: [tex]\(-9 < 3n\)[/tex]
- Divide both sides by 3 to isolate [tex]\(n\)[/tex]:
[tex]\[ -9 < 3n \implies \frac{-9}{3} < n \implies -3 < n \][/tex]
2. Solve the second part of the inequality: [tex]\(3n \leq 12\)[/tex]
- Divide both sides by 3 to isolate [tex]\(n\)[/tex]:
[tex]\[ 3n \leq 12 \implies n \leq \frac{12}{3} \implies n \leq 4 \][/tex]
3. Combine both parts of the inequality:
- From the first part, we have [tex]\(n > -3\)[/tex]
- From the second part, we have [tex]\(n \leq 4\)[/tex]
- Combining these results gives:
[tex]\[ -3 < n \leq 4 \][/tex]
4. Identify the integer solutions:
Since [tex]\(n\)[/tex] is an integer, we need to list all integer values that satisfy [tex]\(-3 < n \leq 4\)[/tex]. The integers that are greater than [tex]\(-3\)[/tex] and less than or equal to [tex]\(4\)[/tex] are:
[tex]\[ -2, -1, 0, 1, 2, 3, 4 \][/tex]
Therefore, the integer values of [tex]\(n\)[/tex] that satisfy the inequality [tex]\(-9 < 3n \leq 12\)[/tex] are [tex]\(-2, -1, 0, 1, 2, 3, 4\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.