Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the relationship between the graphs of the functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] based on the given tables, we need to analyze the transformation that has been applied to the [tex]\( x \)[/tex]-values of [tex]\( f(x) \)[/tex] to produce [tex]\( g(x) \)[/tex]:
The table for [tex]\( f(x) \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{x} & \text{f(x)} \\ \hline -2 & -31 \\ \hline -1 & 0 \\ \hline 1 & 2 \\ \hline 2 & 33 \\ \hline \end{array} \][/tex]
The table for [tex]\( g(x) \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{x} & \text{y (g(x))} \\ \hline 2 & -31 \\ \hline 1 & 0 \\ \hline -1 & 2 \\ \hline -2 & 33 \\ \hline \end{array} \][/tex]
First, we observe how the [tex]\( x \)[/tex]-values in the [tex]\( g(x) \)[/tex] table correspond to the [tex]\( x \)[/tex]-values in the [tex]\( f(x) \)[/tex] table:
- When [tex]\( f(x) \)[/tex] has [tex]\( x = -2 \)[/tex], [tex]\( g(x) \)[/tex] has [tex]\( x = 2 \)[/tex].
- When [tex]\( f(x) \)[/tex] has [tex]\( x = -1 \)[/tex], [tex]\( g(x) \)[/tex] has [tex]\( x = 1 \)[/tex].
- When [tex]\( f(x) \)[/tex] has [tex]\( x = 1 \)[/tex], [tex]\( g(x) \)[/tex] has [tex]\( x = -1 \)[/tex].
- When [tex]\( f(x) \)[/tex] has [tex]\( x = 2 \)[/tex], [tex]\( g(x) \)[/tex] has [tex]\( x = -2 \)[/tex].
We can see that each [tex]\( x \)[/tex]-value in [tex]\( f(x) \)[/tex] has been multiplied by [tex]\(-1\)[/tex] to become the corresponding [tex]\( x \)[/tex]-value in [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = f(-x) \][/tex]
This transformation [tex]\( g(x) = f(-x) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] across the [tex]\( y \)[/tex]-axis.
Let's consider the options provided:
A. Reflections across the [tex]\( x \)[/tex]-axis would mean the [tex]\( y \)[/tex]-values get negated. This means [tex]\( g(x) = -f(x) \)[/tex], which is not the case here.
B. Reflections over the line [tex]\( x=y \)[/tex] imply swapping [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the points. This transformation would not apply in this scenario.
C. Reflections across the [tex]\( y \)[/tex]-axis mean the [tex]\( x \)[/tex]-values get negated. This means [tex]\( g(x) = f(-x) \)[/tex], which is what we have demonstrated.
D. No relationship would mean they don't directly reflect or transform, which is not the case here.
Thus, the correct relationship is:
C. They are reflections of each other across the [tex]\( y \)[/tex]-axis.
The table for [tex]\( f(x) \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{x} & \text{f(x)} \\ \hline -2 & -31 \\ \hline -1 & 0 \\ \hline 1 & 2 \\ \hline 2 & 33 \\ \hline \end{array} \][/tex]
The table for [tex]\( g(x) \)[/tex]:
[tex]\[ \begin{array}{|c|c|} \hline \text{x} & \text{y (g(x))} \\ \hline 2 & -31 \\ \hline 1 & 0 \\ \hline -1 & 2 \\ \hline -2 & 33 \\ \hline \end{array} \][/tex]
First, we observe how the [tex]\( x \)[/tex]-values in the [tex]\( g(x) \)[/tex] table correspond to the [tex]\( x \)[/tex]-values in the [tex]\( f(x) \)[/tex] table:
- When [tex]\( f(x) \)[/tex] has [tex]\( x = -2 \)[/tex], [tex]\( g(x) \)[/tex] has [tex]\( x = 2 \)[/tex].
- When [tex]\( f(x) \)[/tex] has [tex]\( x = -1 \)[/tex], [tex]\( g(x) \)[/tex] has [tex]\( x = 1 \)[/tex].
- When [tex]\( f(x) \)[/tex] has [tex]\( x = 1 \)[/tex], [tex]\( g(x) \)[/tex] has [tex]\( x = -1 \)[/tex].
- When [tex]\( f(x) \)[/tex] has [tex]\( x = 2 \)[/tex], [tex]\( g(x) \)[/tex] has [tex]\( x = -2 \)[/tex].
We can see that each [tex]\( x \)[/tex]-value in [tex]\( f(x) \)[/tex] has been multiplied by [tex]\(-1\)[/tex] to become the corresponding [tex]\( x \)[/tex]-value in [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = f(-x) \][/tex]
This transformation [tex]\( g(x) = f(-x) \)[/tex] is a reflection of [tex]\( f(x) \)[/tex] across the [tex]\( y \)[/tex]-axis.
Let's consider the options provided:
A. Reflections across the [tex]\( x \)[/tex]-axis would mean the [tex]\( y \)[/tex]-values get negated. This means [tex]\( g(x) = -f(x) \)[/tex], which is not the case here.
B. Reflections over the line [tex]\( x=y \)[/tex] imply swapping [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the points. This transformation would not apply in this scenario.
C. Reflections across the [tex]\( y \)[/tex]-axis mean the [tex]\( x \)[/tex]-values get negated. This means [tex]\( g(x) = f(-x) \)[/tex], which is what we have demonstrated.
D. No relationship would mean they don't directly reflect or transform, which is not the case here.
Thus, the correct relationship is:
C. They are reflections of each other across the [tex]\( y \)[/tex]-axis.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.
it takes 10 workers 10 days to paint 10 houses. How many houses can five workers paint in five days?