Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Given the results, let’s determine for which pair of functions the exponential consistently grows at a faster rate than the quadratic over the interval [tex]\(0 \leq x \leq 5\)[/tex].
1. Define the Functions:
We have two functions:
- Quadratic function: [tex]\( f(x) = ax^2 + bx + c \)[/tex]
- Exponential function: [tex]\( g(x) = ae^{bx} \)[/tex]
2. Identify Coefficients:
- For the quadratic function, we use [tex]\( a = 1 \)[/tex], [tex]\( b = 0 \)[/tex], [tex]\( c = 0 \)[/tex], resulting in [tex]\( f(x) = x^2 \)[/tex].
- For the exponential function, we use [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], resulting in [tex]\( g(x) = e^x \)[/tex].
3. Evaluate the Functions over the Interval [tex]\( 0 \leq x \leq 5 \)[/tex]:
The interval is divided into 1000 points for a finer comparison. For simplicity, let's look at the beginning, middle, and end values.
- Quadratic [tex]\( f(x) = x^2 \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 0^2 = 0 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex], [tex]\( f(2.5) = (2.5)^2 = 6.25 \)[/tex]
- At [tex]\( x = 5 \)[/tex], [tex]\( f(5) = (5)^2 = 25 \)[/tex]
- Exponential [tex]\( g(x) = e^x \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( g(0) = e^0 = 1 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex], [tex]\( g(2.5) \approx e^{2.5} \approx 12.1825 \)[/tex]
- At [tex]\( x = 5 \)[/tex], [tex]\( g(5) \approx e^5 \approx 148.4132 \)[/tex]
From these values, we see a rapid growth in the exponential function compared to the quadratic function.
4. Compare the Functions Over the Interval:
We inspect the values at specific points:
- At [tex]\( x = 0 \)[/tex]:
- [tex]\( f(0) = 0 \)[/tex]
- [tex]\( g(0) = 1 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex]:
- [tex]\( f(2.5) = 6.25 \)[/tex]
- [tex]\( g(2.5) \approx 12.1825 \)[/tex]
- At [tex]\( x = 5 \)[/tex]:
- [tex]\( f(5) = 25 \)[/tex]
- [tex]\( g(5) \approx 148.4132 \)[/tex]
Clearly, the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex] at all inspected points within the interval.
5. Conclusion:
The exponential function grows at a consistently faster rate than the quadratic function over the interval [tex]\(0 \leq x \leq 5\)[/tex]:
The exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex]. This conclusion holds for all values in the interval, as the exponential function's rate of growth continuously exceeds that of the quadratic function.
1. Define the Functions:
We have two functions:
- Quadratic function: [tex]\( f(x) = ax^2 + bx + c \)[/tex]
- Exponential function: [tex]\( g(x) = ae^{bx} \)[/tex]
2. Identify Coefficients:
- For the quadratic function, we use [tex]\( a = 1 \)[/tex], [tex]\( b = 0 \)[/tex], [tex]\( c = 0 \)[/tex], resulting in [tex]\( f(x) = x^2 \)[/tex].
- For the exponential function, we use [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], resulting in [tex]\( g(x) = e^x \)[/tex].
3. Evaluate the Functions over the Interval [tex]\( 0 \leq x \leq 5 \)[/tex]:
The interval is divided into 1000 points for a finer comparison. For simplicity, let's look at the beginning, middle, and end values.
- Quadratic [tex]\( f(x) = x^2 \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 0^2 = 0 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex], [tex]\( f(2.5) = (2.5)^2 = 6.25 \)[/tex]
- At [tex]\( x = 5 \)[/tex], [tex]\( f(5) = (5)^2 = 25 \)[/tex]
- Exponential [tex]\( g(x) = e^x \)[/tex]:
- At [tex]\( x = 0 \)[/tex], [tex]\( g(0) = e^0 = 1 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex], [tex]\( g(2.5) \approx e^{2.5} \approx 12.1825 \)[/tex]
- At [tex]\( x = 5 \)[/tex], [tex]\( g(5) \approx e^5 \approx 148.4132 \)[/tex]
From these values, we see a rapid growth in the exponential function compared to the quadratic function.
4. Compare the Functions Over the Interval:
We inspect the values at specific points:
- At [tex]\( x = 0 \)[/tex]:
- [tex]\( f(0) = 0 \)[/tex]
- [tex]\( g(0) = 1 \)[/tex]
- At [tex]\( x = 2.5 \)[/tex]:
- [tex]\( f(2.5) = 6.25 \)[/tex]
- [tex]\( g(2.5) \approx 12.1825 \)[/tex]
- At [tex]\( x = 5 \)[/tex]:
- [tex]\( f(5) = 25 \)[/tex]
- [tex]\( g(5) \approx 148.4132 \)[/tex]
Clearly, the exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex] at all inspected points within the interval.
5. Conclusion:
The exponential function grows at a consistently faster rate than the quadratic function over the interval [tex]\(0 \leq x \leq 5\)[/tex]:
The exponential function [tex]\( g(x) = e^x \)[/tex] grows faster than the quadratic function [tex]\( f(x) = x^2 \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex]. This conclusion holds for all values in the interval, as the exponential function's rate of growth continuously exceeds that of the quadratic function.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.