Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which statement completes this proof, let's analyze the given steps in detail:
1. [tex]$\overline{CD}$[/tex] is an altitude of [tex]$\triangle ABC$[/tex].
Reason: Given.
2. [tex]$\angle ADC$[/tex] and [tex]$\angle BDC$[/tex] are right angles.
Reason: Definition of altitude (an altitude creates a right angle with the base of the triangle).
3. [tex]$\triangle ADC$[/tex] and [tex]$\triangle BCD$[/tex] are right triangles.
Reason: Both angles [tex]$\angle ADC$[/tex] and [tex]$\angle BDC$[/tex] are right angles, thus forming right triangles.
4. [tex]$\sin(A) = \frac{CD}{b}$[/tex] and [tex]$\sin(B) = \frac{CD}{a}$[/tex].
Reason: Definition of sine in right triangles:
- [tex]$\sin(A)$[/tex] is the ratio of the length of the side opposite angle A ([tex]$CD$[/tex]) to the hypotenuse of triangle [tex]$\triangle ADC$[/tex] ([tex]$b$[/tex]).
- Similarly, [tex]$\sin(B)$[/tex] is the ratio of the length of the side opposite angle B ([tex]$CD$[/tex]) to the hypotenuse of triangle [tex]$\triangle BCD$[/tex] ([tex]$a$[/tex]).
5. Multiplication property of equality:
From the equations in step 4, we can derive:
- Multiplying both sides of [tex]$\sin(A) = \frac{CD}{b}$[/tex] by [tex]$b$[/tex], we get [tex]$b \cdot \sin(A) = CD$[/tex].
- Multiplying both sides of [tex]$\sin(B) = \frac{CD}{a}$[/tex] by [tex]$a$[/tex], we get [tex]$a \cdot \sin(B) = CD$[/tex].
6. [tex]$CD = b \cdot \sin(A)$[/tex] and [tex]$CD = a \cdot \sin(B)$[/tex].
Reason: From the multiplication property of equality, we get these two relations.
7. By the Substitution property of equality, we equate the two expressions for [tex]$CD$[/tex]:
[tex]$b \cdot \sin(A) = a \cdot \sin(B)$[/tex].
- Dividing both sides by [tex]$\sin(A) \cdot \sin(B)$[/tex], we get [tex]$\frac{a}{\sin(A)} = \frac{b}{\sin(B)}$[/tex].
8. Finally, we conclude that:
- [tex]$\boxed{b = CD \cdot \sin(A) \text{ and } a = CD \cdot \sin(B)}$[/tex].
So, the correct statement from the provided options to complete the proof is:
C. [tex]$\quad b = CD \sin (A)$[/tex] and [tex]$a = CD \sin (B)$[/tex].
1. [tex]$\overline{CD}$[/tex] is an altitude of [tex]$\triangle ABC$[/tex].
Reason: Given.
2. [tex]$\angle ADC$[/tex] and [tex]$\angle BDC$[/tex] are right angles.
Reason: Definition of altitude (an altitude creates a right angle with the base of the triangle).
3. [tex]$\triangle ADC$[/tex] and [tex]$\triangle BCD$[/tex] are right triangles.
Reason: Both angles [tex]$\angle ADC$[/tex] and [tex]$\angle BDC$[/tex] are right angles, thus forming right triangles.
4. [tex]$\sin(A) = \frac{CD}{b}$[/tex] and [tex]$\sin(B) = \frac{CD}{a}$[/tex].
Reason: Definition of sine in right triangles:
- [tex]$\sin(A)$[/tex] is the ratio of the length of the side opposite angle A ([tex]$CD$[/tex]) to the hypotenuse of triangle [tex]$\triangle ADC$[/tex] ([tex]$b$[/tex]).
- Similarly, [tex]$\sin(B)$[/tex] is the ratio of the length of the side opposite angle B ([tex]$CD$[/tex]) to the hypotenuse of triangle [tex]$\triangle BCD$[/tex] ([tex]$a$[/tex]).
5. Multiplication property of equality:
From the equations in step 4, we can derive:
- Multiplying both sides of [tex]$\sin(A) = \frac{CD}{b}$[/tex] by [tex]$b$[/tex], we get [tex]$b \cdot \sin(A) = CD$[/tex].
- Multiplying both sides of [tex]$\sin(B) = \frac{CD}{a}$[/tex] by [tex]$a$[/tex], we get [tex]$a \cdot \sin(B) = CD$[/tex].
6. [tex]$CD = b \cdot \sin(A)$[/tex] and [tex]$CD = a \cdot \sin(B)$[/tex].
Reason: From the multiplication property of equality, we get these two relations.
7. By the Substitution property of equality, we equate the two expressions for [tex]$CD$[/tex]:
[tex]$b \cdot \sin(A) = a \cdot \sin(B)$[/tex].
- Dividing both sides by [tex]$\sin(A) \cdot \sin(B)$[/tex], we get [tex]$\frac{a}{\sin(A)} = \frac{b}{\sin(B)}$[/tex].
8. Finally, we conclude that:
- [tex]$\boxed{b = CD \cdot \sin(A) \text{ and } a = CD \cdot \sin(B)}$[/tex].
So, the correct statement from the provided options to complete the proof is:
C. [tex]$\quad b = CD \sin (A)$[/tex] and [tex]$a = CD \sin (B)$[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.