At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which statement completes this proof, let's analyze the given steps in detail:
1. [tex]$\overline{CD}$[/tex] is an altitude of [tex]$\triangle ABC$[/tex].
Reason: Given.
2. [tex]$\angle ADC$[/tex] and [tex]$\angle BDC$[/tex] are right angles.
Reason: Definition of altitude (an altitude creates a right angle with the base of the triangle).
3. [tex]$\triangle ADC$[/tex] and [tex]$\triangle BCD$[/tex] are right triangles.
Reason: Both angles [tex]$\angle ADC$[/tex] and [tex]$\angle BDC$[/tex] are right angles, thus forming right triangles.
4. [tex]$\sin(A) = \frac{CD}{b}$[/tex] and [tex]$\sin(B) = \frac{CD}{a}$[/tex].
Reason: Definition of sine in right triangles:
- [tex]$\sin(A)$[/tex] is the ratio of the length of the side opposite angle A ([tex]$CD$[/tex]) to the hypotenuse of triangle [tex]$\triangle ADC$[/tex] ([tex]$b$[/tex]).
- Similarly, [tex]$\sin(B)$[/tex] is the ratio of the length of the side opposite angle B ([tex]$CD$[/tex]) to the hypotenuse of triangle [tex]$\triangle BCD$[/tex] ([tex]$a$[/tex]).
5. Multiplication property of equality:
From the equations in step 4, we can derive:
- Multiplying both sides of [tex]$\sin(A) = \frac{CD}{b}$[/tex] by [tex]$b$[/tex], we get [tex]$b \cdot \sin(A) = CD$[/tex].
- Multiplying both sides of [tex]$\sin(B) = \frac{CD}{a}$[/tex] by [tex]$a$[/tex], we get [tex]$a \cdot \sin(B) = CD$[/tex].
6. [tex]$CD = b \cdot \sin(A)$[/tex] and [tex]$CD = a \cdot \sin(B)$[/tex].
Reason: From the multiplication property of equality, we get these two relations.
7. By the Substitution property of equality, we equate the two expressions for [tex]$CD$[/tex]:
[tex]$b \cdot \sin(A) = a \cdot \sin(B)$[/tex].
- Dividing both sides by [tex]$\sin(A) \cdot \sin(B)$[/tex], we get [tex]$\frac{a}{\sin(A)} = \frac{b}{\sin(B)}$[/tex].
8. Finally, we conclude that:
- [tex]$\boxed{b = CD \cdot \sin(A) \text{ and } a = CD \cdot \sin(B)}$[/tex].
So, the correct statement from the provided options to complete the proof is:
C. [tex]$\quad b = CD \sin (A)$[/tex] and [tex]$a = CD \sin (B)$[/tex].
1. [tex]$\overline{CD}$[/tex] is an altitude of [tex]$\triangle ABC$[/tex].
Reason: Given.
2. [tex]$\angle ADC$[/tex] and [tex]$\angle BDC$[/tex] are right angles.
Reason: Definition of altitude (an altitude creates a right angle with the base of the triangle).
3. [tex]$\triangle ADC$[/tex] and [tex]$\triangle BCD$[/tex] are right triangles.
Reason: Both angles [tex]$\angle ADC$[/tex] and [tex]$\angle BDC$[/tex] are right angles, thus forming right triangles.
4. [tex]$\sin(A) = \frac{CD}{b}$[/tex] and [tex]$\sin(B) = \frac{CD}{a}$[/tex].
Reason: Definition of sine in right triangles:
- [tex]$\sin(A)$[/tex] is the ratio of the length of the side opposite angle A ([tex]$CD$[/tex]) to the hypotenuse of triangle [tex]$\triangle ADC$[/tex] ([tex]$b$[/tex]).
- Similarly, [tex]$\sin(B)$[/tex] is the ratio of the length of the side opposite angle B ([tex]$CD$[/tex]) to the hypotenuse of triangle [tex]$\triangle BCD$[/tex] ([tex]$a$[/tex]).
5. Multiplication property of equality:
From the equations in step 4, we can derive:
- Multiplying both sides of [tex]$\sin(A) = \frac{CD}{b}$[/tex] by [tex]$b$[/tex], we get [tex]$b \cdot \sin(A) = CD$[/tex].
- Multiplying both sides of [tex]$\sin(B) = \frac{CD}{a}$[/tex] by [tex]$a$[/tex], we get [tex]$a \cdot \sin(B) = CD$[/tex].
6. [tex]$CD = b \cdot \sin(A)$[/tex] and [tex]$CD = a \cdot \sin(B)$[/tex].
Reason: From the multiplication property of equality, we get these two relations.
7. By the Substitution property of equality, we equate the two expressions for [tex]$CD$[/tex]:
[tex]$b \cdot \sin(A) = a \cdot \sin(B)$[/tex].
- Dividing both sides by [tex]$\sin(A) \cdot \sin(B)$[/tex], we get [tex]$\frac{a}{\sin(A)} = \frac{b}{\sin(B)}$[/tex].
8. Finally, we conclude that:
- [tex]$\boxed{b = CD \cdot \sin(A) \text{ and } a = CD \cdot \sin(B)}$[/tex].
So, the correct statement from the provided options to complete the proof is:
C. [tex]$\quad b = CD \sin (A)$[/tex] and [tex]$a = CD \sin (B)$[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.
fructuse, sucrose, and starch are all examples of ? carbohydrates, lipids,nucleic acids or proteins?