Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the value of [tex]\( x \)[/tex] that satisfies the given conditions, we follow these steps:
1. Calculate the slope of the first line passing through points (8, 7) and (7, -6):
The slope formula is given by:
[tex]\[ \text{slope}_1 = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((8, 7)\)[/tex] and [tex]\((7, -6)\)[/tex]:
[tex]\[ \text{slope}_1 = \frac{-6 - 7}{7 - 8} = \frac{-13}{-1} = 13 \][/tex]
2. Determine the slope of the second line that is perpendicular to the first line:
If two lines are perpendicular, the product of their slopes is [tex]\(-1\)[/tex]. Let the slope of the second line be [tex]\(\text{slope}_2\)[/tex]. Thus:
[tex]\[ \text{slope}_1 \cdot \text{slope}_2 = -1 \][/tex]
Substituting the value of [tex]\(\text{slope}_1\)[/tex]:
[tex]\[ 13 \cdot \text{slope}_2 = -1 \][/tex]
Solving for [tex]\(\text{slope}_2\)[/tex]:
[tex]\[ \text{slope}_2 = -\frac{1}{13} \][/tex]
3. Use the slope of the second line to find [tex]\( x \)[/tex] for the line passing through points (2, 4) and [tex]\((x, 3)\)[/tex]:
The slope formula for the second line is:
[tex]\[ \text{slope}_2 = \frac{y_4 - y_3}{x_4 - x_3} \][/tex]
Substituting the points [tex]\((2, 4)\)[/tex] and [tex]\((x, 3)\)[/tex] and the value of [tex]\(\text{slope}_2\)[/tex]:
[tex]\[ -\frac{1}{13} = \frac{3 - 4}{x - 2} \][/tex]
Simplify the numerator:
[tex]\[ -\frac{1}{13} = \frac{-1}{x - 2} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Cross-multiply to solve for [tex]\( x \)[/tex]:
[tex]\[ -1 \cdot (x - 2) = -13 \cdot 1 \][/tex]
Simplify:
[tex]\[ -x + 2 = -13 \][/tex]
Isolate [tex]\( x \)[/tex]:
[tex]\[ -x = -13 - 2 \][/tex]
[tex]\[ -x = -15 \][/tex]
[tex]\[ x = 15 \][/tex]
Thus, the value of [tex]\( x \)[/tex] that satisfies the given conditions is [tex]\(\boxed{15}\)[/tex].
1. Calculate the slope of the first line passing through points (8, 7) and (7, -6):
The slope formula is given by:
[tex]\[ \text{slope}_1 = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((8, 7)\)[/tex] and [tex]\((7, -6)\)[/tex]:
[tex]\[ \text{slope}_1 = \frac{-6 - 7}{7 - 8} = \frac{-13}{-1} = 13 \][/tex]
2. Determine the slope of the second line that is perpendicular to the first line:
If two lines are perpendicular, the product of their slopes is [tex]\(-1\)[/tex]. Let the slope of the second line be [tex]\(\text{slope}_2\)[/tex]. Thus:
[tex]\[ \text{slope}_1 \cdot \text{slope}_2 = -1 \][/tex]
Substituting the value of [tex]\(\text{slope}_1\)[/tex]:
[tex]\[ 13 \cdot \text{slope}_2 = -1 \][/tex]
Solving for [tex]\(\text{slope}_2\)[/tex]:
[tex]\[ \text{slope}_2 = -\frac{1}{13} \][/tex]
3. Use the slope of the second line to find [tex]\( x \)[/tex] for the line passing through points (2, 4) and [tex]\((x, 3)\)[/tex]:
The slope formula for the second line is:
[tex]\[ \text{slope}_2 = \frac{y_4 - y_3}{x_4 - x_3} \][/tex]
Substituting the points [tex]\((2, 4)\)[/tex] and [tex]\((x, 3)\)[/tex] and the value of [tex]\(\text{slope}_2\)[/tex]:
[tex]\[ -\frac{1}{13} = \frac{3 - 4}{x - 2} \][/tex]
Simplify the numerator:
[tex]\[ -\frac{1}{13} = \frac{-1}{x - 2} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Cross-multiply to solve for [tex]\( x \)[/tex]:
[tex]\[ -1 \cdot (x - 2) = -13 \cdot 1 \][/tex]
Simplify:
[tex]\[ -x + 2 = -13 \][/tex]
Isolate [tex]\( x \)[/tex]:
[tex]\[ -x = -13 - 2 \][/tex]
[tex]\[ -x = -15 \][/tex]
[tex]\[ x = 15 \][/tex]
Thus, the value of [tex]\( x \)[/tex] that satisfies the given conditions is [tex]\(\boxed{15}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.