Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the value of [tex]\( x \)[/tex] that satisfies the given conditions, we follow these steps:
1. Calculate the slope of the first line passing through points (8, 7) and (7, -6):
The slope formula is given by:
[tex]\[ \text{slope}_1 = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((8, 7)\)[/tex] and [tex]\((7, -6)\)[/tex]:
[tex]\[ \text{slope}_1 = \frac{-6 - 7}{7 - 8} = \frac{-13}{-1} = 13 \][/tex]
2. Determine the slope of the second line that is perpendicular to the first line:
If two lines are perpendicular, the product of their slopes is [tex]\(-1\)[/tex]. Let the slope of the second line be [tex]\(\text{slope}_2\)[/tex]. Thus:
[tex]\[ \text{slope}_1 \cdot \text{slope}_2 = -1 \][/tex]
Substituting the value of [tex]\(\text{slope}_1\)[/tex]:
[tex]\[ 13 \cdot \text{slope}_2 = -1 \][/tex]
Solving for [tex]\(\text{slope}_2\)[/tex]:
[tex]\[ \text{slope}_2 = -\frac{1}{13} \][/tex]
3. Use the slope of the second line to find [tex]\( x \)[/tex] for the line passing through points (2, 4) and [tex]\((x, 3)\)[/tex]:
The slope formula for the second line is:
[tex]\[ \text{slope}_2 = \frac{y_4 - y_3}{x_4 - x_3} \][/tex]
Substituting the points [tex]\((2, 4)\)[/tex] and [tex]\((x, 3)\)[/tex] and the value of [tex]\(\text{slope}_2\)[/tex]:
[tex]\[ -\frac{1}{13} = \frac{3 - 4}{x - 2} \][/tex]
Simplify the numerator:
[tex]\[ -\frac{1}{13} = \frac{-1}{x - 2} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Cross-multiply to solve for [tex]\( x \)[/tex]:
[tex]\[ -1 \cdot (x - 2) = -13 \cdot 1 \][/tex]
Simplify:
[tex]\[ -x + 2 = -13 \][/tex]
Isolate [tex]\( x \)[/tex]:
[tex]\[ -x = -13 - 2 \][/tex]
[tex]\[ -x = -15 \][/tex]
[tex]\[ x = 15 \][/tex]
Thus, the value of [tex]\( x \)[/tex] that satisfies the given conditions is [tex]\(\boxed{15}\)[/tex].
1. Calculate the slope of the first line passing through points (8, 7) and (7, -6):
The slope formula is given by:
[tex]\[ \text{slope}_1 = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((8, 7)\)[/tex] and [tex]\((7, -6)\)[/tex]:
[tex]\[ \text{slope}_1 = \frac{-6 - 7}{7 - 8} = \frac{-13}{-1} = 13 \][/tex]
2. Determine the slope of the second line that is perpendicular to the first line:
If two lines are perpendicular, the product of their slopes is [tex]\(-1\)[/tex]. Let the slope of the second line be [tex]\(\text{slope}_2\)[/tex]. Thus:
[tex]\[ \text{slope}_1 \cdot \text{slope}_2 = -1 \][/tex]
Substituting the value of [tex]\(\text{slope}_1\)[/tex]:
[tex]\[ 13 \cdot \text{slope}_2 = -1 \][/tex]
Solving for [tex]\(\text{slope}_2\)[/tex]:
[tex]\[ \text{slope}_2 = -\frac{1}{13} \][/tex]
3. Use the slope of the second line to find [tex]\( x \)[/tex] for the line passing through points (2, 4) and [tex]\((x, 3)\)[/tex]:
The slope formula for the second line is:
[tex]\[ \text{slope}_2 = \frac{y_4 - y_3}{x_4 - x_3} \][/tex]
Substituting the points [tex]\((2, 4)\)[/tex] and [tex]\((x, 3)\)[/tex] and the value of [tex]\(\text{slope}_2\)[/tex]:
[tex]\[ -\frac{1}{13} = \frac{3 - 4}{x - 2} \][/tex]
Simplify the numerator:
[tex]\[ -\frac{1}{13} = \frac{-1}{x - 2} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Cross-multiply to solve for [tex]\( x \)[/tex]:
[tex]\[ -1 \cdot (x - 2) = -13 \cdot 1 \][/tex]
Simplify:
[tex]\[ -x + 2 = -13 \][/tex]
Isolate [tex]\( x \)[/tex]:
[tex]\[ -x = -13 - 2 \][/tex]
[tex]\[ -x = -15 \][/tex]
[tex]\[ x = 15 \][/tex]
Thus, the value of [tex]\( x \)[/tex] that satisfies the given conditions is [tex]\(\boxed{15}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.