Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve this problem step-by-step.
1. Understanding the Relationship:
- We know that the number of gallons [tex]\( g \)[/tex] is proportional to the number of seconds [tex]\( t \)[/tex]. This means [tex]\( g \)[/tex] can be expressed as a constant [tex]\( k \)[/tex] multiplied by [tex]\( t \)[/tex]:
[tex]\[ g = k \times t \][/tex]
2. Using the Given Information:
- A 2-gallon bucket is filled in 5 seconds.
[tex]\[ g = 2 \quad \text{and} \quad t = 5 \][/tex]
3. Finding the Constant of Proportionality [tex]\( k \)[/tex]:
- We can find [tex]\( k \)[/tex] by dividing the gallons by the seconds.
[tex]\[ k = \frac{g}{t} = \frac{2}{5} = 0.4 \][/tex]
- So the relationship between [tex]\( g \)[/tex] and [tex]\( t \)[/tex] can be described by:
[tex]\[ g = 0.4 \times t \][/tex]
4. Checking the Given Equations:
- [tex]\( g = 0.4 t \)[/tex]:
[tex]\[ g = 0.4 \times t \implies \text{This matches our derived relationship, so it's correct.} \][/tex]
- [tex]\( t = 0.4 g \)[/tex]:
[tex]\[ t = 0.4 \times g \implies \text{This does not match as it doesn't correspond to our relationship.} \][/tex]
- [tex]\( g = 2.5 t \)[/tex]:
[tex]\[ g = 2.5 \times t \implies \text{This does not match our derived relationship.} \][/tex]
- [tex]\( t = 2.5 g \)[/tex]:
[tex]\[ t = 2.5 \times g \implies \text{This does not match as it doesn't correspond to our relationship.} \][/tex]
- [tex]\( g = \frac{2}{5} t \)[/tex]:
[tex]\[ g = \frac{2}{5} t \implies \text{This matches our derived relationship.} \][/tex]
5. Conclusion:
The equations that correctly represent the relationship between [tex]\( g \)[/tex] and [tex]\( t \)[/tex] are:
[tex]\[ g = 0.4 t \quad \text{and} \quad g = \frac{2}{5} t \][/tex]
1. Understanding the Relationship:
- We know that the number of gallons [tex]\( g \)[/tex] is proportional to the number of seconds [tex]\( t \)[/tex]. This means [tex]\( g \)[/tex] can be expressed as a constant [tex]\( k \)[/tex] multiplied by [tex]\( t \)[/tex]:
[tex]\[ g = k \times t \][/tex]
2. Using the Given Information:
- A 2-gallon bucket is filled in 5 seconds.
[tex]\[ g = 2 \quad \text{and} \quad t = 5 \][/tex]
3. Finding the Constant of Proportionality [tex]\( k \)[/tex]:
- We can find [tex]\( k \)[/tex] by dividing the gallons by the seconds.
[tex]\[ k = \frac{g}{t} = \frac{2}{5} = 0.4 \][/tex]
- So the relationship between [tex]\( g \)[/tex] and [tex]\( t \)[/tex] can be described by:
[tex]\[ g = 0.4 \times t \][/tex]
4. Checking the Given Equations:
- [tex]\( g = 0.4 t \)[/tex]:
[tex]\[ g = 0.4 \times t \implies \text{This matches our derived relationship, so it's correct.} \][/tex]
- [tex]\( t = 0.4 g \)[/tex]:
[tex]\[ t = 0.4 \times g \implies \text{This does not match as it doesn't correspond to our relationship.} \][/tex]
- [tex]\( g = 2.5 t \)[/tex]:
[tex]\[ g = 2.5 \times t \implies \text{This does not match our derived relationship.} \][/tex]
- [tex]\( t = 2.5 g \)[/tex]:
[tex]\[ t = 2.5 \times g \implies \text{This does not match as it doesn't correspond to our relationship.} \][/tex]
- [tex]\( g = \frac{2}{5} t \)[/tex]:
[tex]\[ g = \frac{2}{5} t \implies \text{This matches our derived relationship.} \][/tex]
5. Conclusion:
The equations that correctly represent the relationship between [tex]\( g \)[/tex] and [tex]\( t \)[/tex] are:
[tex]\[ g = 0.4 t \quad \text{and} \quad g = \frac{2}{5} t \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.