Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's address each part of the question regarding the algebraic expression [tex]\(x^3 y + x^2 y^2 - x y^3\)[/tex]:
### a) What is the type of the given expression?
The given expression [tex]\(x^3 y + x^2 y^2 - x y^3\)[/tex] is a Polynomial.
### b) Why is the given expression a polynomial?
The given expression is a polynomial because it consists of terms that are the product of constants and variables raised to non-negative integer powers. In a polynomial, you only find terms with variables having non-negative integer exponents, and this expression satisfies that condition.
### c) Find the degree of the given polynomial.
To find the degree of a polynomial, you need to determine the highest sum of the exponents of the variables in any term. Let's break down the degree calculation for each term:
1. First term: [tex]\(x^3 y\)[/tex]
- The exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are 3 and 1, respectively.
- The sum of the exponents is [tex]\(3 + 1 = 4\)[/tex].
2. Second term: [tex]\(x^2 y^2\)[/tex]
- The exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are 2 and 2, respectively.
- The sum of the exponents is [tex]\(2 + 2 = 4\)[/tex].
3. Third term: [tex]\(-x y^3\)[/tex]
- The exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are 1 and 3, respectively.
- The sum of the exponents is [tex]\(1 + 3 = 4\)[/tex].
The degrees of the individual terms are 4, 4, and 4. The highest of these sums is 4. Therefore, the degree of the polynomial [tex]\(x^3 y + x^2 y^2 - x y^3\)[/tex] is 4.
### a) What is the type of the given expression?
The given expression [tex]\(x^3 y + x^2 y^2 - x y^3\)[/tex] is a Polynomial.
### b) Why is the given expression a polynomial?
The given expression is a polynomial because it consists of terms that are the product of constants and variables raised to non-negative integer powers. In a polynomial, you only find terms with variables having non-negative integer exponents, and this expression satisfies that condition.
### c) Find the degree of the given polynomial.
To find the degree of a polynomial, you need to determine the highest sum of the exponents of the variables in any term. Let's break down the degree calculation for each term:
1. First term: [tex]\(x^3 y\)[/tex]
- The exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are 3 and 1, respectively.
- The sum of the exponents is [tex]\(3 + 1 = 4\)[/tex].
2. Second term: [tex]\(x^2 y^2\)[/tex]
- The exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are 2 and 2, respectively.
- The sum of the exponents is [tex]\(2 + 2 = 4\)[/tex].
3. Third term: [tex]\(-x y^3\)[/tex]
- The exponents of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are 1 and 3, respectively.
- The sum of the exponents is [tex]\(1 + 3 = 4\)[/tex].
The degrees of the individual terms are 4, 4, and 4. The highest of these sums is 4. Therefore, the degree of the polynomial [tex]\(x^3 y + x^2 y^2 - x y^3\)[/tex] is 4.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.