At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the given system of equations using the elimination method, we follow these steps:
1. Write down the system of equations:
[tex]\[ \begin{cases} 3a + 6b = 12 \\ -3a + 6b = -12 \end{cases} \][/tex]
2. Add the two equations together to eliminate variable [tex]\(a\)[/tex]:
[tex]\[ (3a + 6b) + (-3a + 6b) = 12 + (-12) \][/tex]
Simplify the left-hand side and the right-hand side:
[tex]\[ 3a + 6b - 3a + 6b = 0 \][/tex]
3. Combine like terms:
[tex]\[ 0a + 12b = 0 \][/tex]
Which simplifies to:
[tex]\[ 12b = 0 \][/tex]
4. Solve for [tex]\(b\)[/tex]:
[tex]\[ 12b = 0 \implies b = 0 \][/tex]
5. Substitute [tex]\(b = 0\)[/tex] back into one of the original equations to find [tex]\(a\)[/tex]:
Using the first equation:
[tex]\[ 3a + 6(0) = 12 \][/tex]
Simplify:
[tex]\[ 3a = 12 \][/tex]
Now, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{12}{3} = 4 \][/tex]
Therefore, the resulting equation when one of the variables is eliminated is:
[tex]\[ 12b = 0 \][/tex]
And the solutions for the variables are [tex]\(a = 4\)[/tex] and [tex]\(b = 0\)[/tex].
1. Write down the system of equations:
[tex]\[ \begin{cases} 3a + 6b = 12 \\ -3a + 6b = -12 \end{cases} \][/tex]
2. Add the two equations together to eliminate variable [tex]\(a\)[/tex]:
[tex]\[ (3a + 6b) + (-3a + 6b) = 12 + (-12) \][/tex]
Simplify the left-hand side and the right-hand side:
[tex]\[ 3a + 6b - 3a + 6b = 0 \][/tex]
3. Combine like terms:
[tex]\[ 0a + 12b = 0 \][/tex]
Which simplifies to:
[tex]\[ 12b = 0 \][/tex]
4. Solve for [tex]\(b\)[/tex]:
[tex]\[ 12b = 0 \implies b = 0 \][/tex]
5. Substitute [tex]\(b = 0\)[/tex] back into one of the original equations to find [tex]\(a\)[/tex]:
Using the first equation:
[tex]\[ 3a + 6(0) = 12 \][/tex]
Simplify:
[tex]\[ 3a = 12 \][/tex]
Now, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{12}{3} = 4 \][/tex]
Therefore, the resulting equation when one of the variables is eliminated is:
[tex]\[ 12b = 0 \][/tex]
And the solutions for the variables are [tex]\(a = 4\)[/tex] and [tex]\(b = 0\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.