Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
(a) [tex]1\, 663\, 200[/tex] ways to choose when the order matters.
(b) [tex]330[/tex] ways to choose when the order is not considered.
Step-by-step explanation:
The permutation formula gives the number of ways to choose and order [tex]k[/tex] items from a total of [tex]n[/tex] items ([tex]n \ge k[/tex]) without replacement:
[tex]\begin{aligned} {}_{n} P_{k} &= \frac{n!}{(n - k)!}\end{aligned}[/tex].
(The numerator is the factorial of [tex]n[/tex], while the denominator is the factorial of [tex](n - k)[/tex].)
The combination formula is for the case where the order within the [tex]k[/tex] selected items does not matter. The combination formula [tex]{}_{n} C_{k}[/tex] for choosing [tex]k[/tex] items out of a total of [tex]n[/tex] without replacement can be derived in the following steps:
- Using the permutation formula, find the number of ways to select these [tex]k[/tex] items with ordering: [tex]{}_{n} P_{k}[/tex].
- Divide the number of ways to select these [tex]k[/tex] items with ordering by the number of possible ordering within [tex]k[/tex] distinct items, [tex]k![/tex].
In other words:
[tex]\begin{aligned} {}_{n} C_{k} &= \frac{{}_{n} P_{k}}{k!} && \genfrac{}{}{0em}{}{(\text{number of ordered choices})}{(\text{number of orderings within $k$ distinct items})} \\ &= \frac{n!}{(n - k)!\, (k)!}\end{aligned}[/tex].
In this question, [tex]n = 11[/tex] while [tex]k = 7[/tex].
The number of ways to choose when ordering matters (permutation) would be:
[tex]\begin{aligned} {}_{n} P_{k} &= \frac{n!}{(n - k)!} = \frac{11!}{(11 - 7)!} = 1\, 663\, 200\end{aligned}[/tex].
The number of ways to choose without considering ordering within the [tex]k[/tex] selected items (combination) would be:
[tex]\begin{aligned} {}_{n} C_{k} &= \frac{n!}{(n - k)!\, (k)!} = \frac{11!}{(11 - 7)!\, (7!)} = 330\end{aligned}[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.