At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the equation [tex]\(5 \cos \theta + 12 \sin \theta = 13\)[/tex] and find the value of [tex]\(\tan \theta\)[/tex], let's follow these steps:
1. Rewrite and expand the equation:
We start with:
[tex]\[ 5 \cos \theta + 12 \sin \theta = 13 \][/tex]
2. Square both sides of the equation:
[tex]\[ (5 \cos \theta + 12 \sin \theta)^2 = 13^2 \][/tex]
Expanding the left side, we get:
[tex]\[ (5 \cos \theta + 12 \sin \theta)^2 = 25 \cos^2 \theta + 2 \cdot 5 \cos \theta \cdot 12 \sin \theta + 144 \sin^2 \theta = 25 \cos^2 \theta + 120 \cos \theta \sin \theta + 144 \sin^2 \theta \][/tex]
[tex]\[ 25 \cos^2 \theta + 120 \cos \theta \sin \theta + 144 \sin^2 \theta = 169 \][/tex]
3. Use the Pythagorean identity [tex]\(\cos^2 \theta + \sin^2 \theta = 1\)[/tex]:
Substitute [tex]\(\cos^2 \theta = 1 - \sin^2 \theta\)[/tex]:
[tex]\[ 25 (1 - \sin^2 \theta) + 144 \sin^2 \theta + 120 \cos \theta \sin \theta = 169 \][/tex]
[tex]\[ 25 - 25 \sin^2 \theta + 144 \sin^2 \theta + 120 \cos \theta \sin \theta = 169 \][/tex]
4. Simplify the equation:
Combine the [tex]\(\sin^2 \theta\)[/tex] terms:
[tex]\[ 25 + 119 \sin^2 \theta + 120 \cos \theta \sin \theta = 169 \][/tex]
Subtract 25 from both sides:
[tex]\[ 119 \sin^2 \theta + 120 \cos \theta \sin \theta = 144 \][/tex]
5. Express [tex]\(\cos \theta\)[/tex] in terms of [tex]\(\sin \theta\)[/tex]:
Let’s hypothesize that [tex]\(\cos \theta\)[/tex] and [tex]\(\sin \theta\)[/tex] form a right triangle with another constant ratio, following the hint in the original expression.
6. Identify the tangent value:
Recognize that the coefficients [tex]\(5 \cos \theta\)[/tex] and [tex]\(12 \sin \theta\)[/tex] suggest a relationship consistent with a new triangle with sides representing a multiple of a known setup.
Given their relationship:
[tex]\[ 5x = \cos \theta \quad \text{and} \quad 12x = \sin \theta \][/tex]
with the hypotenuse being 13x (given by the original equation for consistency).
7. Find the tangent:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{12x}{5x} = \frac{12}{5} = 2.4 \][/tex]
So, the value of [tex]\(\tan \theta\)[/tex] is:
[tex]\[ \tan \theta = 2.4 \][/tex]
1. Rewrite and expand the equation:
We start with:
[tex]\[ 5 \cos \theta + 12 \sin \theta = 13 \][/tex]
2. Square both sides of the equation:
[tex]\[ (5 \cos \theta + 12 \sin \theta)^2 = 13^2 \][/tex]
Expanding the left side, we get:
[tex]\[ (5 \cos \theta + 12 \sin \theta)^2 = 25 \cos^2 \theta + 2 \cdot 5 \cos \theta \cdot 12 \sin \theta + 144 \sin^2 \theta = 25 \cos^2 \theta + 120 \cos \theta \sin \theta + 144 \sin^2 \theta \][/tex]
[tex]\[ 25 \cos^2 \theta + 120 \cos \theta \sin \theta + 144 \sin^2 \theta = 169 \][/tex]
3. Use the Pythagorean identity [tex]\(\cos^2 \theta + \sin^2 \theta = 1\)[/tex]:
Substitute [tex]\(\cos^2 \theta = 1 - \sin^2 \theta\)[/tex]:
[tex]\[ 25 (1 - \sin^2 \theta) + 144 \sin^2 \theta + 120 \cos \theta \sin \theta = 169 \][/tex]
[tex]\[ 25 - 25 \sin^2 \theta + 144 \sin^2 \theta + 120 \cos \theta \sin \theta = 169 \][/tex]
4. Simplify the equation:
Combine the [tex]\(\sin^2 \theta\)[/tex] terms:
[tex]\[ 25 + 119 \sin^2 \theta + 120 \cos \theta \sin \theta = 169 \][/tex]
Subtract 25 from both sides:
[tex]\[ 119 \sin^2 \theta + 120 \cos \theta \sin \theta = 144 \][/tex]
5. Express [tex]\(\cos \theta\)[/tex] in terms of [tex]\(\sin \theta\)[/tex]:
Let’s hypothesize that [tex]\(\cos \theta\)[/tex] and [tex]\(\sin \theta\)[/tex] form a right triangle with another constant ratio, following the hint in the original expression.
6. Identify the tangent value:
Recognize that the coefficients [tex]\(5 \cos \theta\)[/tex] and [tex]\(12 \sin \theta\)[/tex] suggest a relationship consistent with a new triangle with sides representing a multiple of a known setup.
Given their relationship:
[tex]\[ 5x = \cos \theta \quad \text{and} \quad 12x = \sin \theta \][/tex]
with the hypotenuse being 13x (given by the original equation for consistency).
7. Find the tangent:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{12x}{5x} = \frac{12}{5} = 2.4 \][/tex]
So, the value of [tex]\(\tan \theta\)[/tex] is:
[tex]\[ \tan \theta = 2.4 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.