Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What is the solution to the system of equations?

[tex]\[
\begin{array}{l}
y = \frac{2}{3}x + 3 \\
x = -2
\end{array}
\][/tex]

A. [tex]\(\left(-2, -\frac{15}{2}\right)\)[/tex]

B. [tex]\(\left(-2, \frac{5}{3}\right)\)[/tex]

C. [tex]\(\left(-2, \frac{11}{6}\right)\)[/tex]

D. [tex]\(\left(-2, \frac{13}{3}\right)\)[/tex]

Sagot :

To solve the system of equations:

[tex]\[ \begin{array}{l} y = \frac{2}{3}x + 3 \\ x = -2 \end{array} \][/tex]

we will substitute the given value of [tex]\( x \)[/tex] into the first equation to find [tex]\( y \)[/tex].

1. Begin with the equations:
[tex]\[ y = \frac{2}{3}x + 3 \][/tex]
[tex]\[ x = -2 \][/tex]

2. Substitute [tex]\( x = -2 \)[/tex] into the equation for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{2}{3}(-2) + 3 \][/tex]

3. Calculate the product:
[tex]\[ y = \frac{2 \cdot (-2)}{3} + 3 = \frac{-4}{3} + 3 \][/tex]

4. Convert 3 to a fraction with a denominator of 3 to combine the fractions:
[tex]\[ y = \frac{-4}{3} + \frac{9}{3} \][/tex]

5. Combine the fractions:
[tex]\[ y = \frac{-4 + 9}{3} = \frac{5}{3} \][/tex]

So, the value of [tex]\( y \)[/tex] when [tex]\( x = -2 \)[/tex] is [tex]\(\frac{5}{3}\)[/tex].

Therefore, the solution to the system of equations is:

[tex]\[ \left( -2, \frac{5}{3} \right) \][/tex]

Hence, the correct answer is:
[tex]\[ \left(-2, \frac{5}{3}\right) \][/tex]