Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's start by understanding how each transformation affects the cube root parent function, [tex]\( f(x) = \sqrt[3]{x} \)[/tex].
1. Horizontal Shifts:
- Replacing [tex]\( x \)[/tex] with [tex]\( x - h \)[/tex] shifts the function to the right by [tex]\( h \)[/tex] units.
- Replacing [tex]\( x \)[/tex] with [tex]\( x + h \)[/tex] shifts the function to the left by [tex]\( h \)[/tex] units.
2. Vertical Shifts:
- Adding [tex]\( k \)[/tex] to the function, [tex]\( \sqrt[3]{x} + k \)[/tex], shifts the function up by [tex]\( k \)[/tex] units.
- Subtracting [tex]\( k \)[/tex] from the function, [tex]\( \sqrt[3]{x} - k \)[/tex], shifts the function down by [tex]\( k \)[/tex] units.
Now let's analyze each given option:
A. [tex]\( g(x) = \sqrt[3]{x - 3} + 4 \)[/tex]
- This transformation shifts the parent function [tex]\( \sqrt[3]{x} \)[/tex] to the right by 3 units and up by 4 units.
B. [tex]\( g(x) = \sqrt[3]{x + 3} + 4 \)[/tex]
- This transformation shifts the parent function [tex]\( \sqrt[3]{x} \)[/tex] to the left by 3 units and up by 4 units.
C. [tex]\( g(x) = \sqrt[3]{x + 4} + 3 \)[/tex]
- This transformation shifts the parent function [tex]\( \sqrt[3]{x} \)[/tex] to the left by 4 units and up by 3 units.
D. [tex]\( g(x) = \sqrt[3]{x - 4} + 3 \)[/tex]
- This transformation shifts the parent function [tex]\( \sqrt[3]{x} \)[/tex] to the right by 4 units and up by 3 units.
Given this information, we need to determine the correct transformation among these options.
From the analysis:
- [tex]\( g(x) = \sqrt[3]{x - 3} + 4 \)[/tex], option A, correctly describes a shift to the right by 3 units and a vertical shift upwards by 4 units.
Thus, the appropriate function [tex]\( g(x) \)[/tex] is:
[tex]\[ \boxed{g(x) = \sqrt[3]{x-3} + 4} \][/tex]
1. Horizontal Shifts:
- Replacing [tex]\( x \)[/tex] with [tex]\( x - h \)[/tex] shifts the function to the right by [tex]\( h \)[/tex] units.
- Replacing [tex]\( x \)[/tex] with [tex]\( x + h \)[/tex] shifts the function to the left by [tex]\( h \)[/tex] units.
2. Vertical Shifts:
- Adding [tex]\( k \)[/tex] to the function, [tex]\( \sqrt[3]{x} + k \)[/tex], shifts the function up by [tex]\( k \)[/tex] units.
- Subtracting [tex]\( k \)[/tex] from the function, [tex]\( \sqrt[3]{x} - k \)[/tex], shifts the function down by [tex]\( k \)[/tex] units.
Now let's analyze each given option:
A. [tex]\( g(x) = \sqrt[3]{x - 3} + 4 \)[/tex]
- This transformation shifts the parent function [tex]\( \sqrt[3]{x} \)[/tex] to the right by 3 units and up by 4 units.
B. [tex]\( g(x) = \sqrt[3]{x + 3} + 4 \)[/tex]
- This transformation shifts the parent function [tex]\( \sqrt[3]{x} \)[/tex] to the left by 3 units and up by 4 units.
C. [tex]\( g(x) = \sqrt[3]{x + 4} + 3 \)[/tex]
- This transformation shifts the parent function [tex]\( \sqrt[3]{x} \)[/tex] to the left by 4 units and up by 3 units.
D. [tex]\( g(x) = \sqrt[3]{x - 4} + 3 \)[/tex]
- This transformation shifts the parent function [tex]\( \sqrt[3]{x} \)[/tex] to the right by 4 units and up by 3 units.
Given this information, we need to determine the correct transformation among these options.
From the analysis:
- [tex]\( g(x) = \sqrt[3]{x - 3} + 4 \)[/tex], option A, correctly describes a shift to the right by 3 units and a vertical shift upwards by 4 units.
Thus, the appropriate function [tex]\( g(x) \)[/tex] is:
[tex]\[ \boxed{g(x) = \sqrt[3]{x-3} + 4} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.