Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the function [tex]\( g(x) \)[/tex] after shifting the graph of [tex]\( f(x) = \frac{1}{x} \)[/tex] 3 units up and 4 units to the right, we need to understand how these transformations affect the function.
### Horizontal Shift
A horizontal shift to the right involves replacing [tex]\( x \)[/tex] with [tex]\( x - h \)[/tex] in the function, where [tex]\( h \)[/tex] is the number of units shifted. For a shift 4 units to the right:
For [tex]\( f(x) = \frac{1}{x} \)[/tex], after shifting 4 units to the right, we get:
[tex]\[ f(x - 4) = \frac{1}{x - 4} \][/tex]
### Vertical Shift
A vertical shift up involves adding a constant [tex]\( k \)[/tex] to the function, where [tex]\( k \)[/tex] is the number of units shifted. For a shift 3 units up:
For [tex]\( \frac{1}{x - 4} \)[/tex], after shifting 3 units up, we add 3 to the function:
[tex]\[ g(x) = \frac{1}{x - 4} + 3 \][/tex]
### Conclusion Regarding the Choices
Let's check the answers provided:
A. [tex]\( g(x) = \frac{1}{x - 3} + 4 \)[/tex]
- This represents a shift 3 units to the right and 4 units up, which does not match the required shift.
B. [tex]\( g(x) = \frac{1}{x - 4} + 3 \)[/tex]
- This represents a shift 4 units to the right and 3 units up, which exactly matches the required shift.
C. [tex]\( g(x) = \frac{1}{x + 3} + 4 \)[/tex]
- This represents a shift 3 units to the left and 4 units up, which does not match the required shift.
D. [tex]\( g(x) = \frac{1}{x + 4} + 3 \)[/tex]
- This represents a shift 4 units to the left and 3 units up, which does not match the required shift.
Thus, the correct function [tex]\( g(x) \)[/tex] given the described transformations is:
[tex]\[ \boxed{g(x) = \frac{1}{x - 4} + 3} \][/tex]
### Horizontal Shift
A horizontal shift to the right involves replacing [tex]\( x \)[/tex] with [tex]\( x - h \)[/tex] in the function, where [tex]\( h \)[/tex] is the number of units shifted. For a shift 4 units to the right:
For [tex]\( f(x) = \frac{1}{x} \)[/tex], after shifting 4 units to the right, we get:
[tex]\[ f(x - 4) = \frac{1}{x - 4} \][/tex]
### Vertical Shift
A vertical shift up involves adding a constant [tex]\( k \)[/tex] to the function, where [tex]\( k \)[/tex] is the number of units shifted. For a shift 3 units up:
For [tex]\( \frac{1}{x - 4} \)[/tex], after shifting 3 units up, we add 3 to the function:
[tex]\[ g(x) = \frac{1}{x - 4} + 3 \][/tex]
### Conclusion Regarding the Choices
Let's check the answers provided:
A. [tex]\( g(x) = \frac{1}{x - 3} + 4 \)[/tex]
- This represents a shift 3 units to the right and 4 units up, which does not match the required shift.
B. [tex]\( g(x) = \frac{1}{x - 4} + 3 \)[/tex]
- This represents a shift 4 units to the right and 3 units up, which exactly matches the required shift.
C. [tex]\( g(x) = \frac{1}{x + 3} + 4 \)[/tex]
- This represents a shift 3 units to the left and 4 units up, which does not match the required shift.
D. [tex]\( g(x) = \frac{1}{x + 4} + 3 \)[/tex]
- This represents a shift 4 units to the left and 3 units up, which does not match the required shift.
Thus, the correct function [tex]\( g(x) \)[/tex] given the described transformations is:
[tex]\[ \boxed{g(x) = \frac{1}{x - 4} + 3} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.