Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's analyze the given functions and their transformation:
1. The original function is given by:
[tex]\[ f(x) = \frac{1}{x} \][/tex]
2. The transformed function is:
[tex]\[ g(x) = \frac{1}{x} + 9 \][/tex]
To determine how the graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] is transformed to become [tex]\(g(x) = \frac{1}{x} + 9\)[/tex], we need to examine what happens when we add 9 to the original function [tex]\(f(x)\)[/tex].
### Step-by-Step Analysis:
- Start with the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(x) = \frac{1}{x} \][/tex]
This is the basic reciprocal function. Its graph is a hyperbola with two branches, one in the first quadrant and one in the third quadrant. It is asymptotic to both the x-axis (y = 0) and the y-axis (x = 0).
- Define the transformation:
To obtain [tex]\(g(x)\)[/tex], we add 9 to [tex]\(f(x)\)[/tex]:
[tex]\[ g(x) = \frac{1}{x} + 9 \][/tex]
Adding a constant value to a function [tex]\(f(x)\)[/tex] results in a vertical shift of the graph. Specifically, when we add a positive constant [tex]\(c\)[/tex] to [tex]\(f(x)\)[/tex], the graph of [tex]\(f(x)\)[/tex] shifts upward by [tex]\(c\)[/tex] units.
- Determine the direction of the shift:
In this case, the constant added to [tex]\(f(x)\)[/tex] is 9. Therefore, the entire graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] will be shifted upward by 9 units.
### Conclusion:
The effect on the graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] when transformed to [tex]\(g(x) = \frac{1}{x} + 9\)[/tex] is that the graph of [tex]\(f(x)\)[/tex] is shifted 9 units up.
So, the correct answer is:
[tex]\[ \boxed{D. \text{The graph of } f(x) \text{ is shifted 9 units up.}} \][/tex]
1. The original function is given by:
[tex]\[ f(x) = \frac{1}{x} \][/tex]
2. The transformed function is:
[tex]\[ g(x) = \frac{1}{x} + 9 \][/tex]
To determine how the graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] is transformed to become [tex]\(g(x) = \frac{1}{x} + 9\)[/tex], we need to examine what happens when we add 9 to the original function [tex]\(f(x)\)[/tex].
### Step-by-Step Analysis:
- Start with the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(x) = \frac{1}{x} \][/tex]
This is the basic reciprocal function. Its graph is a hyperbola with two branches, one in the first quadrant and one in the third quadrant. It is asymptotic to both the x-axis (y = 0) and the y-axis (x = 0).
- Define the transformation:
To obtain [tex]\(g(x)\)[/tex], we add 9 to [tex]\(f(x)\)[/tex]:
[tex]\[ g(x) = \frac{1}{x} + 9 \][/tex]
Adding a constant value to a function [tex]\(f(x)\)[/tex] results in a vertical shift of the graph. Specifically, when we add a positive constant [tex]\(c\)[/tex] to [tex]\(f(x)\)[/tex], the graph of [tex]\(f(x)\)[/tex] shifts upward by [tex]\(c\)[/tex] units.
- Determine the direction of the shift:
In this case, the constant added to [tex]\(f(x)\)[/tex] is 9. Therefore, the entire graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] will be shifted upward by 9 units.
### Conclusion:
The effect on the graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] when transformed to [tex]\(g(x) = \frac{1}{x} + 9\)[/tex] is that the graph of [tex]\(f(x)\)[/tex] is shifted 9 units up.
So, the correct answer is:
[tex]\[ \boxed{D. \text{The graph of } f(x) \text{ is shifted 9 units up.}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.