Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's analyze the given functions and their transformation:
1. The original function is given by:
[tex]\[ f(x) = \frac{1}{x} \][/tex]
2. The transformed function is:
[tex]\[ g(x) = \frac{1}{x} + 9 \][/tex]
To determine how the graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] is transformed to become [tex]\(g(x) = \frac{1}{x} + 9\)[/tex], we need to examine what happens when we add 9 to the original function [tex]\(f(x)\)[/tex].
### Step-by-Step Analysis:
- Start with the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(x) = \frac{1}{x} \][/tex]
This is the basic reciprocal function. Its graph is a hyperbola with two branches, one in the first quadrant and one in the third quadrant. It is asymptotic to both the x-axis (y = 0) and the y-axis (x = 0).
- Define the transformation:
To obtain [tex]\(g(x)\)[/tex], we add 9 to [tex]\(f(x)\)[/tex]:
[tex]\[ g(x) = \frac{1}{x} + 9 \][/tex]
Adding a constant value to a function [tex]\(f(x)\)[/tex] results in a vertical shift of the graph. Specifically, when we add a positive constant [tex]\(c\)[/tex] to [tex]\(f(x)\)[/tex], the graph of [tex]\(f(x)\)[/tex] shifts upward by [tex]\(c\)[/tex] units.
- Determine the direction of the shift:
In this case, the constant added to [tex]\(f(x)\)[/tex] is 9. Therefore, the entire graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] will be shifted upward by 9 units.
### Conclusion:
The effect on the graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] when transformed to [tex]\(g(x) = \frac{1}{x} + 9\)[/tex] is that the graph of [tex]\(f(x)\)[/tex] is shifted 9 units up.
So, the correct answer is:
[tex]\[ \boxed{D. \text{The graph of } f(x) \text{ is shifted 9 units up.}} \][/tex]
1. The original function is given by:
[tex]\[ f(x) = \frac{1}{x} \][/tex]
2. The transformed function is:
[tex]\[ g(x) = \frac{1}{x} + 9 \][/tex]
To determine how the graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] is transformed to become [tex]\(g(x) = \frac{1}{x} + 9\)[/tex], we need to examine what happens when we add 9 to the original function [tex]\(f(x)\)[/tex].
### Step-by-Step Analysis:
- Start with the function [tex]\(f(x)\)[/tex]:
[tex]\[ f(x) = \frac{1}{x} \][/tex]
This is the basic reciprocal function. Its graph is a hyperbola with two branches, one in the first quadrant and one in the third quadrant. It is asymptotic to both the x-axis (y = 0) and the y-axis (x = 0).
- Define the transformation:
To obtain [tex]\(g(x)\)[/tex], we add 9 to [tex]\(f(x)\)[/tex]:
[tex]\[ g(x) = \frac{1}{x} + 9 \][/tex]
Adding a constant value to a function [tex]\(f(x)\)[/tex] results in a vertical shift of the graph. Specifically, when we add a positive constant [tex]\(c\)[/tex] to [tex]\(f(x)\)[/tex], the graph of [tex]\(f(x)\)[/tex] shifts upward by [tex]\(c\)[/tex] units.
- Determine the direction of the shift:
In this case, the constant added to [tex]\(f(x)\)[/tex] is 9. Therefore, the entire graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] will be shifted upward by 9 units.
### Conclusion:
The effect on the graph of [tex]\(f(x) = \frac{1}{x}\)[/tex] when transformed to [tex]\(g(x) = \frac{1}{x} + 9\)[/tex] is that the graph of [tex]\(f(x)\)[/tex] is shifted 9 units up.
So, the correct answer is:
[tex]\[ \boxed{D. \text{The graph of } f(x) \text{ is shifted 9 units up.}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.