Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's analyze the transformation of the function [tex]\( f(x) = x^2 \)[/tex] to [tex]\( h(x) = \frac{1}{6} x^2 - 9 \)[/tex].
### Step-by-Step Analysis:
1. Identify the Original Function:
The original function is [tex]\( f(x) = x^2 \)[/tex].
2. Vertical Compression:
The term [tex]\(\frac{1}{6} x^2\)[/tex] indicates that the graph is vertically compressed by a factor.
Vertical compression by a factor [tex]\(a\)[/tex] means scaling the original function's y-values by [tex]\(a\)[/tex]. Here, [tex]\(a = \frac{1}{6}\)[/tex].
This means that every y-value of the original function [tex]\( f(x) = x^2 \)[/tex] is multiplied by [tex]\(\frac{1}{6}\)[/tex].
3. Vertical Shift:
The term [tex]\(- 9\)[/tex] indicates a vertical shift.
A vertical shift down by 9 units means translating every y-value of the compressed function downward by 9 units.
Thus, the transformation [tex]\( f(x) \rightarrow h(x) = \frac{1}{6} x^2 - 9 \)[/tex] can be summarized as follows:
- The graph of [tex]\( f(x) = x^2 \)[/tex] is vertically compressed by a factor of 6 (since [tex]\(\frac{1}{6}\)[/tex] is the fraction by which it is compressed).
- The graph is then shifted down by 9 units.
### Conclusion:
After considering the vertical compression and vertical shift, the correct description of the transformation that has occurred is:
C. The graph of [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 6 and shifted 9 units down.
### Step-by-Step Analysis:
1. Identify the Original Function:
The original function is [tex]\( f(x) = x^2 \)[/tex].
2. Vertical Compression:
The term [tex]\(\frac{1}{6} x^2\)[/tex] indicates that the graph is vertically compressed by a factor.
Vertical compression by a factor [tex]\(a\)[/tex] means scaling the original function's y-values by [tex]\(a\)[/tex]. Here, [tex]\(a = \frac{1}{6}\)[/tex].
This means that every y-value of the original function [tex]\( f(x) = x^2 \)[/tex] is multiplied by [tex]\(\frac{1}{6}\)[/tex].
3. Vertical Shift:
The term [tex]\(- 9\)[/tex] indicates a vertical shift.
A vertical shift down by 9 units means translating every y-value of the compressed function downward by 9 units.
Thus, the transformation [tex]\( f(x) \rightarrow h(x) = \frac{1}{6} x^2 - 9 \)[/tex] can be summarized as follows:
- The graph of [tex]\( f(x) = x^2 \)[/tex] is vertically compressed by a factor of 6 (since [tex]\(\frac{1}{6}\)[/tex] is the fraction by which it is compressed).
- The graph is then shifted down by 9 units.
### Conclusion:
After considering the vertical compression and vertical shift, the correct description of the transformation that has occurred is:
C. The graph of [tex]\( f(x) \)[/tex] is vertically compressed by a factor of 6 and shifted 9 units down.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.