Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve this in a step-by-step manner:
1. Identify the given data:
- Mass of copper ([tex]\(m_c\)[/tex]): [tex]\(95.0 \, \text{g}\)[/tex]
- Specific heat capacity of copper ([tex]\(c_c\)[/tex]): [tex]\(0.20 \, \text{J/g} \cdot ^\circ\text{C}\)[/tex]
- Initial temperature of copper ([tex]\(T_{i,c}\)[/tex]): [tex]\(82.4^\circ \text{C}\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]): [tex]\(25.1^\circ \text{C}\)[/tex]
- Specific heat capacity of water ([tex]\(c_w\)[/tex]): [tex]\(4.18 \, \text{J/g} \cdot ^\circ\text{C}\)[/tex]
- Initial temperature of water ([tex]\(T_{i,w}\)[/tex]): [tex]\(22.0^\circ \text{C}\)[/tex]
2. Calculate the change in temperature for copper ([tex]\(\Delta T_c\)[/tex]):
[tex]\[ \Delta T_c = T_f - T_{i,c} = 25.1^\circ \text{C} - 82.4^\circ \text{C} = -57.3^\circ \text{C} \][/tex]
3. Calculate the change in temperature for water ([tex]\(\Delta T_w\)[/tex]):
[tex]\[ \Delta T_w = T_f - T_{i,w} = 25.1^\circ \text{C} - 22.0^\circ \text{C} = 3.1^\circ \text{C} \][/tex]
4. Calculate the heat lost by the copper ([tex]\(q_c\)[/tex]):
[tex]\[ q_c = c_c \times m_c \times \Delta T_c \][/tex]
Plug in the values:
[tex]\[ q_c = 0.20 \, \text{J/g} \cdot ^\circ\text{C} \times 95.0 \, \text{g} \times (-57.3^\circ \text{C}) = 1088.7 \, \text{J} \][/tex]
Note: The heat lost by the copper is typically considered negative, but when calculating the absolute value of energy transferred, we use the positive value [tex]\(1088.7 \, \text{J}\)[/tex].
5. Relate the heat gained by the water to the heat lost by the copper:
[tex]\[ q_w = q_c \][/tex]
6. Set up the equation for the heat absorbed by the water:
[tex]\[ q_w = c_w \times m_w \times \Delta T_w \][/tex]
Since [tex]\( q_w = q_c \)[/tex]:
[tex]\[ 1088.7 \, \text{J} = 4.18 \, \text{J/g} \cdot ^\circ\text{C} \times m_w \times 3.1^\circ \text{C} \][/tex]
7. Solve for the mass of the water ([tex]\(m_w\)[/tex]):
[tex]\[ m_w = \frac{1088.7 \, \text{J}}{4.18 \, \text{J/g} \cdot ^\circ\text{C} \times 3.1^\circ \text{C}} \][/tex]
[tex]\[ m_w = \frac{1088.7 \, \text{J}}{12.958 \, \text{J/g}} = 84.01759530791786 \, \text{g} \][/tex]
8. Conclusion:
The mass of the water in the container was approximately [tex]\(84.0 \, \text{g}\)[/tex].
Therefore, the correct answer is [tex]\(84.0 \, \text{g } \text{H}_2 \text{O}\)[/tex].
1. Identify the given data:
- Mass of copper ([tex]\(m_c\)[/tex]): [tex]\(95.0 \, \text{g}\)[/tex]
- Specific heat capacity of copper ([tex]\(c_c\)[/tex]): [tex]\(0.20 \, \text{J/g} \cdot ^\circ\text{C}\)[/tex]
- Initial temperature of copper ([tex]\(T_{i,c}\)[/tex]): [tex]\(82.4^\circ \text{C}\)[/tex]
- Final temperature ([tex]\(T_f\)[/tex]): [tex]\(25.1^\circ \text{C}\)[/tex]
- Specific heat capacity of water ([tex]\(c_w\)[/tex]): [tex]\(4.18 \, \text{J/g} \cdot ^\circ\text{C}\)[/tex]
- Initial temperature of water ([tex]\(T_{i,w}\)[/tex]): [tex]\(22.0^\circ \text{C}\)[/tex]
2. Calculate the change in temperature for copper ([tex]\(\Delta T_c\)[/tex]):
[tex]\[ \Delta T_c = T_f - T_{i,c} = 25.1^\circ \text{C} - 82.4^\circ \text{C} = -57.3^\circ \text{C} \][/tex]
3. Calculate the change in temperature for water ([tex]\(\Delta T_w\)[/tex]):
[tex]\[ \Delta T_w = T_f - T_{i,w} = 25.1^\circ \text{C} - 22.0^\circ \text{C} = 3.1^\circ \text{C} \][/tex]
4. Calculate the heat lost by the copper ([tex]\(q_c\)[/tex]):
[tex]\[ q_c = c_c \times m_c \times \Delta T_c \][/tex]
Plug in the values:
[tex]\[ q_c = 0.20 \, \text{J/g} \cdot ^\circ\text{C} \times 95.0 \, \text{g} \times (-57.3^\circ \text{C}) = 1088.7 \, \text{J} \][/tex]
Note: The heat lost by the copper is typically considered negative, but when calculating the absolute value of energy transferred, we use the positive value [tex]\(1088.7 \, \text{J}\)[/tex].
5. Relate the heat gained by the water to the heat lost by the copper:
[tex]\[ q_w = q_c \][/tex]
6. Set up the equation for the heat absorbed by the water:
[tex]\[ q_w = c_w \times m_w \times \Delta T_w \][/tex]
Since [tex]\( q_w = q_c \)[/tex]:
[tex]\[ 1088.7 \, \text{J} = 4.18 \, \text{J/g} \cdot ^\circ\text{C} \times m_w \times 3.1^\circ \text{C} \][/tex]
7. Solve for the mass of the water ([tex]\(m_w\)[/tex]):
[tex]\[ m_w = \frac{1088.7 \, \text{J}}{4.18 \, \text{J/g} \cdot ^\circ\text{C} \times 3.1^\circ \text{C}} \][/tex]
[tex]\[ m_w = \frac{1088.7 \, \text{J}}{12.958 \, \text{J/g}} = 84.01759530791786 \, \text{g} \][/tex]
8. Conclusion:
The mass of the water in the container was approximately [tex]\(84.0 \, \text{g}\)[/tex].
Therefore, the correct answer is [tex]\(84.0 \, \text{g } \text{H}_2 \text{O}\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.