Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the problem using the Law of Sines, let's first identify the given distances in the context of a triangle formed by the points where the ropes are attached and the chest.
1. The distance between Team A and Team B ([tex]\(AB\)[/tex]) is 4.6 meters.
2. The distance from Team A to the chest ([tex]\(AX\)[/tex]) is 2.4 meters.
3. The distance from Team B to the chest ([tex]\(BX\)[/tex]) is 3.2 meters.
4. The angle between the teams' ropes is [tex]\(110^\circ\)[/tex].
We will use the Law of Sines which states:
[tex]\[ \frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}. \][/tex]
In our case, angle [tex]\(C\)[/tex] is [tex]\(110^\circ\)[/tex]. We need to set up an equation to find angle [tex]\(A\)[/tex], which is the angle opposite to side [tex]\(AX\)[/tex] (2.4 meters).
To use the Law of Sines:
[tex]\[ \frac{\sin(A)}{AX} = \frac{\sin(C)}{AB} \][/tex]
Substitute the known values into the equation:
[tex]\[ \frac{\sin(A)}{2.4} = \frac{\sin(110^\circ)}{4.6}. \][/tex]
Therefore, the correct equation to solve for angle [tex]\(A\)[/tex] using the Law of Sines is:
[tex]\[ \frac{\sin(A)}{2.4}=\frac{\sin \left(110^{\circ}\right)}{4.6}. \][/tex]
1. The distance between Team A and Team B ([tex]\(AB\)[/tex]) is 4.6 meters.
2. The distance from Team A to the chest ([tex]\(AX\)[/tex]) is 2.4 meters.
3. The distance from Team B to the chest ([tex]\(BX\)[/tex]) is 3.2 meters.
4. The angle between the teams' ropes is [tex]\(110^\circ\)[/tex].
We will use the Law of Sines which states:
[tex]\[ \frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}. \][/tex]
In our case, angle [tex]\(C\)[/tex] is [tex]\(110^\circ\)[/tex]. We need to set up an equation to find angle [tex]\(A\)[/tex], which is the angle opposite to side [tex]\(AX\)[/tex] (2.4 meters).
To use the Law of Sines:
[tex]\[ \frac{\sin(A)}{AX} = \frac{\sin(C)}{AB} \][/tex]
Substitute the known values into the equation:
[tex]\[ \frac{\sin(A)}{2.4} = \frac{\sin(110^\circ)}{4.6}. \][/tex]
Therefore, the correct equation to solve for angle [tex]\(A\)[/tex] using the Law of Sines is:
[tex]\[ \frac{\sin(A)}{2.4}=\frac{\sin \left(110^{\circ}\right)}{4.6}. \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.