At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which solution to the equation [tex]\(\frac{3}{2g+8} = \frac{g+2}{g^2-16}\)[/tex] is extraneous, we need to examine the solutions carefully. Let’s go through the steps:
1. Factorize the denominator on the right side:
[tex]\[ g^2 - 16 = (g - 4)(g + 4) \][/tex]
2. Identify possible solutions:
When solving the equation, we solve for [tex]\(g\)[/tex], resulting in potential solutions [tex]\(g = -4\)[/tex] and [tex]\(g = 16\)[/tex].
3. Determine if any solutions lead to division by zero:
- For [tex]\(g = -4\)[/tex]:
[tex]\[ 2g + 8 = 2(-4) + 8 = -8 + 8 = 0 \][/tex]
Here, the denominator [tex]\(2g + 8\)[/tex] becomes zero, which makes the fraction [tex]\(\frac{3}{2g+8}\)[/tex] undefined. Hence, [tex]\(g = -4\)[/tex] is an extraneous solution.
- For [tex]\(g = 16\)[/tex]:
[tex]\[ g^2 - 16 = 16^2 - 16 = 256 - 16 = 240 \neq 0 \][/tex]
And also:
[tex]\[ 2g + 8 = 2(16) + 8 = 32 + 8 = 40 \][/tex]
Neither denominator becomes zero for [tex]\(g = 16\)[/tex], so this is not an extraneous solution.
4. Conclusion:
From the above analysis, we see that substituting [tex]\(g = -4\)[/tex] leads to a denominator of zero and is therefore an extraneous solution.
Thus, the extraneous solution to the equation [tex]\(\frac{3}{2g+8} = \frac{g+2}{g^2-16}\)[/tex] is:
[tex]\[ g = -4 \][/tex]
1. Factorize the denominator on the right side:
[tex]\[ g^2 - 16 = (g - 4)(g + 4) \][/tex]
2. Identify possible solutions:
When solving the equation, we solve for [tex]\(g\)[/tex], resulting in potential solutions [tex]\(g = -4\)[/tex] and [tex]\(g = 16\)[/tex].
3. Determine if any solutions lead to division by zero:
- For [tex]\(g = -4\)[/tex]:
[tex]\[ 2g + 8 = 2(-4) + 8 = -8 + 8 = 0 \][/tex]
Here, the denominator [tex]\(2g + 8\)[/tex] becomes zero, which makes the fraction [tex]\(\frac{3}{2g+8}\)[/tex] undefined. Hence, [tex]\(g = -4\)[/tex] is an extraneous solution.
- For [tex]\(g = 16\)[/tex]:
[tex]\[ g^2 - 16 = 16^2 - 16 = 256 - 16 = 240 \neq 0 \][/tex]
And also:
[tex]\[ 2g + 8 = 2(16) + 8 = 32 + 8 = 40 \][/tex]
Neither denominator becomes zero for [tex]\(g = 16\)[/tex], so this is not an extraneous solution.
4. Conclusion:
From the above analysis, we see that substituting [tex]\(g = -4\)[/tex] leads to a denominator of zero and is therefore an extraneous solution.
Thus, the extraneous solution to the equation [tex]\(\frac{3}{2g+8} = \frac{g+2}{g^2-16}\)[/tex] is:
[tex]\[ g = -4 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.