Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's find the measure of [tex]\(\angle Q\)[/tex] in a triangle with side lengths 4, 5, and 6 using the Law of Cosines.
The Law of Cosines states:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
Given the sides of the triangle:
[tex]\[ a = 4 \][/tex]
[tex]\[ b = 5 \][/tex]
[tex]\[ c = 6 \][/tex]
We need to find [tex]\(\angle A\)[/tex], which in this context is [tex]\(\angle Q\)[/tex].
First, rewrite the Law of Cosines formula to solve for [tex]\(\cos(A)\)[/tex]:
[tex]\[ \cos(A) = \frac{b^2 + c^2 - a^2}{2bc} \][/tex]
Substitute the given side lengths into the equation:
[tex]\[ \cos(\angle Q) = \frac{5^2 + 6^2 - 4^2}{2 \cdot 5 \cdot 6} \][/tex]
[tex]\[ \cos(\angle Q) = \frac{25 + 36 - 16}{60} \][/tex]
[tex]\[ \cos(\angle Q) = \frac{45}{60} \][/tex]
[tex]\[ \cos(\angle Q) = \frac{3}{4} \][/tex]
Now, find the angle whose cosine is [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \angle Q = \cos^{-1}\left(\frac{3}{4}\right) \][/tex]
Converting this value to degrees (you would usually use a calculator for this step):
[tex]\[ \angle Q \approx 41^\circ \][/tex]
Hence, the measure of [tex]\(\angle Q\)[/tex], rounded to the nearest whole degree, is:
[tex]\[ 41^\circ \][/tex]
Therefore, the measure of [tex]\(\angle Q\)[/tex] in the triangle is [tex]\(41^\circ\)[/tex]. Thus, the appropriate answer choice is:
[tex]\[ \boxed{41^\circ} \][/tex]
The Law of Cosines states:
[tex]\[ a^2 = b^2 + c^2 - 2bc \cos(A) \][/tex]
Given the sides of the triangle:
[tex]\[ a = 4 \][/tex]
[tex]\[ b = 5 \][/tex]
[tex]\[ c = 6 \][/tex]
We need to find [tex]\(\angle A\)[/tex], which in this context is [tex]\(\angle Q\)[/tex].
First, rewrite the Law of Cosines formula to solve for [tex]\(\cos(A)\)[/tex]:
[tex]\[ \cos(A) = \frac{b^2 + c^2 - a^2}{2bc} \][/tex]
Substitute the given side lengths into the equation:
[tex]\[ \cos(\angle Q) = \frac{5^2 + 6^2 - 4^2}{2 \cdot 5 \cdot 6} \][/tex]
[tex]\[ \cos(\angle Q) = \frac{25 + 36 - 16}{60} \][/tex]
[tex]\[ \cos(\angle Q) = \frac{45}{60} \][/tex]
[tex]\[ \cos(\angle Q) = \frac{3}{4} \][/tex]
Now, find the angle whose cosine is [tex]\(\frac{3}{4}\)[/tex]:
[tex]\[ \angle Q = \cos^{-1}\left(\frac{3}{4}\right) \][/tex]
Converting this value to degrees (you would usually use a calculator for this step):
[tex]\[ \angle Q \approx 41^\circ \][/tex]
Hence, the measure of [tex]\(\angle Q\)[/tex], rounded to the nearest whole degree, is:
[tex]\[ 41^\circ \][/tex]
Therefore, the measure of [tex]\(\angle Q\)[/tex] in the triangle is [tex]\(41^\circ\)[/tex]. Thus, the appropriate answer choice is:
[tex]\[ \boxed{41^\circ} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.