Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to calculate the amount of heat required for each element to change its temperature from the initial temperature [tex]\(25.0^{\circ} C\)[/tex] to the final temperature [tex]\(90.0^{\circ} C\)[/tex]. The heat required ([tex]$q$[/tex]) can be calculated using the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the sample (in grams),
- [tex]\( C_p \)[/tex] is the specific heat capacity (in J/(g·°C)),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in °C).
Given:
- Mass ([tex]\( m \)[/tex]) of each sample = 10 g,
- Initial temperature = [tex]\(25.0^{\circ} C\)[/tex],
- Final temperature = [tex]\(90.0^{\circ} C\)[/tex],
- Change in temperature ([tex]\( \Delta T \)[/tex]) = [tex]\( 90.0 - 25.0 = 65.0^{\circ} C\)[/tex].
For each element, we have:
1. Aluminum (Al):
- Specific heat capacity [tex]\( C_p \)[/tex] = 0.897 J/(g·°C)
- Heat required [tex]\( q_{Al} = 10 \cdot 0.897 \cdot 65.0 = 582.05 \)[/tex] J
2. Silver (Ag):
- Specific heat capacity [tex]\( C_p \)[/tex] = 0.234 J/(g·°C)
- Heat required [tex]\( q_{Ag} = 10 \cdot 0.234 \cdot 65.0 = 152.1 \)[/tex] J
3. Iron (Fe):
- Specific heat capacity [tex]\( C_p \)[/tex] = 0.450 J/(g·°C)
- Heat required [tex]\( q_{Fe} = 10 \cdot 0.450 \cdot 65.0 = 292.5 \)[/tex] J
4. Zinc (Zn):
- Specific heat capacity [tex]\( C_p \)[/tex] = 0.387 J/(g·°C)
- Heat required [tex]\( q_{Zn} = 10 \cdot 0.387 \cdot 65.0 = 251.55 \)[/tex] J
Next, we will sort the elements by the amount of heat required ([tex]\( q \)[/tex]) to reach [tex]\( 90.0^{\circ} C \)[/tex] in ascending order:
[tex]\[ q_{Ag} < q_{Zn} < q_{Fe} < q_{Al} \][/tex]
Thus, the order in which the elements will reach [tex]\( 90.0^{\circ} C \)[/tex] first to last is:
[tex]\[ \text{Ag, Zn, Fe, Al} \][/tex]
Comparing this result with the given options, we select:
[tex]\( \boxed{2} \)[/tex] Ag , Zn , Fe , Al
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the sample (in grams),
- [tex]\( C_p \)[/tex] is the specific heat capacity (in J/(g·°C)),
- [tex]\( \Delta T \)[/tex] is the change in temperature (in °C).
Given:
- Mass ([tex]\( m \)[/tex]) of each sample = 10 g,
- Initial temperature = [tex]\(25.0^{\circ} C\)[/tex],
- Final temperature = [tex]\(90.0^{\circ} C\)[/tex],
- Change in temperature ([tex]\( \Delta T \)[/tex]) = [tex]\( 90.0 - 25.0 = 65.0^{\circ} C\)[/tex].
For each element, we have:
1. Aluminum (Al):
- Specific heat capacity [tex]\( C_p \)[/tex] = 0.897 J/(g·°C)
- Heat required [tex]\( q_{Al} = 10 \cdot 0.897 \cdot 65.0 = 582.05 \)[/tex] J
2. Silver (Ag):
- Specific heat capacity [tex]\( C_p \)[/tex] = 0.234 J/(g·°C)
- Heat required [tex]\( q_{Ag} = 10 \cdot 0.234 \cdot 65.0 = 152.1 \)[/tex] J
3. Iron (Fe):
- Specific heat capacity [tex]\( C_p \)[/tex] = 0.450 J/(g·°C)
- Heat required [tex]\( q_{Fe} = 10 \cdot 0.450 \cdot 65.0 = 292.5 \)[/tex] J
4. Zinc (Zn):
- Specific heat capacity [tex]\( C_p \)[/tex] = 0.387 J/(g·°C)
- Heat required [tex]\( q_{Zn} = 10 \cdot 0.387 \cdot 65.0 = 251.55 \)[/tex] J
Next, we will sort the elements by the amount of heat required ([tex]\( q \)[/tex]) to reach [tex]\( 90.0^{\circ} C \)[/tex] in ascending order:
[tex]\[ q_{Ag} < q_{Zn} < q_{Fe} < q_{Al} \][/tex]
Thus, the order in which the elements will reach [tex]\( 90.0^{\circ} C \)[/tex] first to last is:
[tex]\[ \text{Ag, Zn, Fe, Al} \][/tex]
Comparing this result with the given options, we select:
[tex]\( \boxed{2} \)[/tex] Ag , Zn , Fe , Al
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.