Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To write the equation of a circle in standard form, we follow these steps:
1. Identify the center (h, k) of the circle:
The center is given as [tex]\((5, -7)\)[/tex].
2. Identify a point on the circle:
A point on the circle is given as [tex]\((-3, -1)\)[/tex].
3. Calculate the radius [tex]\( r \)[/tex]:
The radius is the distance from the center to the given point on the circle. The distance [tex]\( r \)[/tex] can be determined using the distance formula:
[tex]\[ r = \sqrt{(x_1 - h)^2 + (y_1 - k)^2} \][/tex]
Substituting the given values:
[tex]\[ r = \sqrt{(-3 - 5)^2 + (-1 + 7)^2} \][/tex]
[tex]\[ r = \sqrt{(-8)^2 + 6^2} \][/tex]
[tex]\[ r = \sqrt{64 + 36} \][/tex]
[tex]\[ r = \sqrt{100} \][/tex]
[tex]\[ r = 10 \][/tex]
4. Write the equation of the circle in standard form:
The standard form of a circle's equation with center [tex]\((h, k)\)[/tex] and radius [tex]\( r \)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substituting the center [tex]\((5, -7)\)[/tex] and radius [tex]\( 10 \)[/tex]:
[tex]\[ (x - 5)^2 + (y + 7)^2 = 10^2 \][/tex]
[tex]\[ (x - 5)^2 + (y + 7)^2 = 100 \][/tex]
Therefore, the equation of the circle in standard form is:
[tex]\[ (x - 5)^2 + (y + 7)^2 = 100 \][/tex]
1. Identify the center (h, k) of the circle:
The center is given as [tex]\((5, -7)\)[/tex].
2. Identify a point on the circle:
A point on the circle is given as [tex]\((-3, -1)\)[/tex].
3. Calculate the radius [tex]\( r \)[/tex]:
The radius is the distance from the center to the given point on the circle. The distance [tex]\( r \)[/tex] can be determined using the distance formula:
[tex]\[ r = \sqrt{(x_1 - h)^2 + (y_1 - k)^2} \][/tex]
Substituting the given values:
[tex]\[ r = \sqrt{(-3 - 5)^2 + (-1 + 7)^2} \][/tex]
[tex]\[ r = \sqrt{(-8)^2 + 6^2} \][/tex]
[tex]\[ r = \sqrt{64 + 36} \][/tex]
[tex]\[ r = \sqrt{100} \][/tex]
[tex]\[ r = 10 \][/tex]
4. Write the equation of the circle in standard form:
The standard form of a circle's equation with center [tex]\((h, k)\)[/tex] and radius [tex]\( r \)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Substituting the center [tex]\((5, -7)\)[/tex] and radius [tex]\( 10 \)[/tex]:
[tex]\[ (x - 5)^2 + (y + 7)^2 = 10^2 \][/tex]
[tex]\[ (x - 5)^2 + (y + 7)^2 = 100 \][/tex]
Therefore, the equation of the circle in standard form is:
[tex]\[ (x - 5)^2 + (y + 7)^2 = 100 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.
It takes 36 nails to weigh one pound. How many nails would it take to weigh 7 wholes and 2/3 pounds?