Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the final temperature of the bomb calorimeter after the combustion process, we need to use the formula for heat transfer:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat absorbed or released,
- [tex]\( m \)[/tex] is the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
From the problem, we know:
- The heat released by the combustion ([tex]\( q \)[/tex]) is [tex]\( 24.0 \)[/tex] kJ (or [tex]\( 24,000 \)[/tex] J after converting from kJ to J),
- The mass of the calorimeter ([tex]\( m \)[/tex]) is [tex]\( 1.30 \)[/tex] kg (or [tex]\( 1300 \)[/tex] g after converting from kg to g),
- The specific heat capacity ([tex]\( C_p \)[/tex]) is [tex]\( 3.41 \)[/tex] J/(g·°C),
- The initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) is [tex]\( 25.5^{\circ} \)[/tex]C.
First, we solve for the change in temperature ([tex]\( \Delta T \)[/tex]) using the formula rearranged to isolate [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \cdot C_p} \][/tex]
Substitute in the known values:
[tex]\[ \Delta T = \frac{24,000 \, \text{J}}{1300 \, \text{g} \cdot 3.41 \, \frac{\text{J}}{\text{g} \cdot ^{\circ} \text{C}}} \][/tex]
[tex]\[ \Delta T = \frac{24,000}{4433} \][/tex]
[tex]\[ \Delta T \approx 5.41^{\circ} \text{C} \][/tex]
Next, we find the final temperature ([tex]\( T_{\text{final}} \)[/tex]) by adding the change in temperature to the initial temperature:
[tex]\[ T_{\text{final}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{final}} = 25.5^{\circ} \text{C} + 5.41^{\circ} \text{C} \][/tex]
[tex]\[ T_{\text{final}} \approx 30.91^{\circ} \text{C} \][/tex]
Thus, the final temperature of the calorimeter is [tex]\( \boxed{30.9^{\circ} \text{C}} \)[/tex].
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat absorbed or released,
- [tex]\( m \)[/tex] is the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
From the problem, we know:
- The heat released by the combustion ([tex]\( q \)[/tex]) is [tex]\( 24.0 \)[/tex] kJ (or [tex]\( 24,000 \)[/tex] J after converting from kJ to J),
- The mass of the calorimeter ([tex]\( m \)[/tex]) is [tex]\( 1.30 \)[/tex] kg (or [tex]\( 1300 \)[/tex] g after converting from kg to g),
- The specific heat capacity ([tex]\( C_p \)[/tex]) is [tex]\( 3.41 \)[/tex] J/(g·°C),
- The initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) is [tex]\( 25.5^{\circ} \)[/tex]C.
First, we solve for the change in temperature ([tex]\( \Delta T \)[/tex]) using the formula rearranged to isolate [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \cdot C_p} \][/tex]
Substitute in the known values:
[tex]\[ \Delta T = \frac{24,000 \, \text{J}}{1300 \, \text{g} \cdot 3.41 \, \frac{\text{J}}{\text{g} \cdot ^{\circ} \text{C}}} \][/tex]
[tex]\[ \Delta T = \frac{24,000}{4433} \][/tex]
[tex]\[ \Delta T \approx 5.41^{\circ} \text{C} \][/tex]
Next, we find the final temperature ([tex]\( T_{\text{final}} \)[/tex]) by adding the change in temperature to the initial temperature:
[tex]\[ T_{\text{final}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{final}} = 25.5^{\circ} \text{C} + 5.41^{\circ} \text{C} \][/tex]
[tex]\[ T_{\text{final}} \approx 30.91^{\circ} \text{C} \][/tex]
Thus, the final temperature of the calorimeter is [tex]\( \boxed{30.9^{\circ} \text{C}} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.