Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the final temperature of the bomb calorimeter after the combustion process, we need to use the formula for heat transfer:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat absorbed or released,
- [tex]\( m \)[/tex] is the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
From the problem, we know:
- The heat released by the combustion ([tex]\( q \)[/tex]) is [tex]\( 24.0 \)[/tex] kJ (or [tex]\( 24,000 \)[/tex] J after converting from kJ to J),
- The mass of the calorimeter ([tex]\( m \)[/tex]) is [tex]\( 1.30 \)[/tex] kg (or [tex]\( 1300 \)[/tex] g after converting from kg to g),
- The specific heat capacity ([tex]\( C_p \)[/tex]) is [tex]\( 3.41 \)[/tex] J/(g·°C),
- The initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) is [tex]\( 25.5^{\circ} \)[/tex]C.
First, we solve for the change in temperature ([tex]\( \Delta T \)[/tex]) using the formula rearranged to isolate [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \cdot C_p} \][/tex]
Substitute in the known values:
[tex]\[ \Delta T = \frac{24,000 \, \text{J}}{1300 \, \text{g} \cdot 3.41 \, \frac{\text{J}}{\text{g} \cdot ^{\circ} \text{C}}} \][/tex]
[tex]\[ \Delta T = \frac{24,000}{4433} \][/tex]
[tex]\[ \Delta T \approx 5.41^{\circ} \text{C} \][/tex]
Next, we find the final temperature ([tex]\( T_{\text{final}} \)[/tex]) by adding the change in temperature to the initial temperature:
[tex]\[ T_{\text{final}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{final}} = 25.5^{\circ} \text{C} + 5.41^{\circ} \text{C} \][/tex]
[tex]\[ T_{\text{final}} \approx 30.91^{\circ} \text{C} \][/tex]
Thus, the final temperature of the calorimeter is [tex]\( \boxed{30.9^{\circ} \text{C}} \)[/tex].
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat absorbed or released,
- [tex]\( m \)[/tex] is the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
From the problem, we know:
- The heat released by the combustion ([tex]\( q \)[/tex]) is [tex]\( 24.0 \)[/tex] kJ (or [tex]\( 24,000 \)[/tex] J after converting from kJ to J),
- The mass of the calorimeter ([tex]\( m \)[/tex]) is [tex]\( 1.30 \)[/tex] kg (or [tex]\( 1300 \)[/tex] g after converting from kg to g),
- The specific heat capacity ([tex]\( C_p \)[/tex]) is [tex]\( 3.41 \)[/tex] J/(g·°C),
- The initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) is [tex]\( 25.5^{\circ} \)[/tex]C.
First, we solve for the change in temperature ([tex]\( \Delta T \)[/tex]) using the formula rearranged to isolate [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \cdot C_p} \][/tex]
Substitute in the known values:
[tex]\[ \Delta T = \frac{24,000 \, \text{J}}{1300 \, \text{g} \cdot 3.41 \, \frac{\text{J}}{\text{g} \cdot ^{\circ} \text{C}}} \][/tex]
[tex]\[ \Delta T = \frac{24,000}{4433} \][/tex]
[tex]\[ \Delta T \approx 5.41^{\circ} \text{C} \][/tex]
Next, we find the final temperature ([tex]\( T_{\text{final}} \)[/tex]) by adding the change in temperature to the initial temperature:
[tex]\[ T_{\text{final}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{final}} = 25.5^{\circ} \text{C} + 5.41^{\circ} \text{C} \][/tex]
[tex]\[ T_{\text{final}} \approx 30.91^{\circ} \text{C} \][/tex]
Thus, the final temperature of the calorimeter is [tex]\( \boxed{30.9^{\circ} \text{C}} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.