Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the final temperature of the bomb calorimeter after the combustion process, we need to use the formula for heat transfer:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat absorbed or released,
- [tex]\( m \)[/tex] is the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
From the problem, we know:
- The heat released by the combustion ([tex]\( q \)[/tex]) is [tex]\( 24.0 \)[/tex] kJ (or [tex]\( 24,000 \)[/tex] J after converting from kJ to J),
- The mass of the calorimeter ([tex]\( m \)[/tex]) is [tex]\( 1.30 \)[/tex] kg (or [tex]\( 1300 \)[/tex] g after converting from kg to g),
- The specific heat capacity ([tex]\( C_p \)[/tex]) is [tex]\( 3.41 \)[/tex] J/(g·°C),
- The initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) is [tex]\( 25.5^{\circ} \)[/tex]C.
First, we solve for the change in temperature ([tex]\( \Delta T \)[/tex]) using the formula rearranged to isolate [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \cdot C_p} \][/tex]
Substitute in the known values:
[tex]\[ \Delta T = \frac{24,000 \, \text{J}}{1300 \, \text{g} \cdot 3.41 \, \frac{\text{J}}{\text{g} \cdot ^{\circ} \text{C}}} \][/tex]
[tex]\[ \Delta T = \frac{24,000}{4433} \][/tex]
[tex]\[ \Delta T \approx 5.41^{\circ} \text{C} \][/tex]
Next, we find the final temperature ([tex]\( T_{\text{final}} \)[/tex]) by adding the change in temperature to the initial temperature:
[tex]\[ T_{\text{final}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{final}} = 25.5^{\circ} \text{C} + 5.41^{\circ} \text{C} \][/tex]
[tex]\[ T_{\text{final}} \approx 30.91^{\circ} \text{C} \][/tex]
Thus, the final temperature of the calorimeter is [tex]\( \boxed{30.9^{\circ} \text{C}} \)[/tex].
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat absorbed or released,
- [tex]\( m \)[/tex] is the mass of the calorimeter,
- [tex]\( C_p \)[/tex] is the specific heat capacity,
- [tex]\( \Delta T \)[/tex] is the change in temperature.
From the problem, we know:
- The heat released by the combustion ([tex]\( q \)[/tex]) is [tex]\( 24.0 \)[/tex] kJ (or [tex]\( 24,000 \)[/tex] J after converting from kJ to J),
- The mass of the calorimeter ([tex]\( m \)[/tex]) is [tex]\( 1.30 \)[/tex] kg (or [tex]\( 1300 \)[/tex] g after converting from kg to g),
- The specific heat capacity ([tex]\( C_p \)[/tex]) is [tex]\( 3.41 \)[/tex] J/(g·°C),
- The initial temperature ([tex]\( T_{\text{initial}} \)[/tex]) is [tex]\( 25.5^{\circ} \)[/tex]C.
First, we solve for the change in temperature ([tex]\( \Delta T \)[/tex]) using the formula rearranged to isolate [tex]\( \Delta T \)[/tex]:
[tex]\[ \Delta T = \frac{q}{m \cdot C_p} \][/tex]
Substitute in the known values:
[tex]\[ \Delta T = \frac{24,000 \, \text{J}}{1300 \, \text{g} \cdot 3.41 \, \frac{\text{J}}{\text{g} \cdot ^{\circ} \text{C}}} \][/tex]
[tex]\[ \Delta T = \frac{24,000}{4433} \][/tex]
[tex]\[ \Delta T \approx 5.41^{\circ} \text{C} \][/tex]
Next, we find the final temperature ([tex]\( T_{\text{final}} \)[/tex]) by adding the change in temperature to the initial temperature:
[tex]\[ T_{\text{final}} = T_{\text{initial}} + \Delta T \][/tex]
[tex]\[ T_{\text{final}} = 25.5^{\circ} \text{C} + 5.41^{\circ} \text{C} \][/tex]
[tex]\[ T_{\text{final}} \approx 30.91^{\circ} \text{C} \][/tex]
Thus, the final temperature of the calorimeter is [tex]\( \boxed{30.9^{\circ} \text{C}} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.