Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's explore the function [tex]\( f(x) \)[/tex]:
The function [tex]\( f(x) \)[/tex] is defined piecewise over two intervals. Let's write it out clearly:
[tex]\[ f(x) = \begin{cases} x - 2 & \text{if } x \leq 0 \\ 3^x - 1 & \text{if } x > 0 \end{cases} \][/tex]
### Analyzing the two pieces of the function:
#### For [tex]\( x \leq 0 \)[/tex]:
In this interval, [tex]\( f(x) = x - 2 \)[/tex].
- This is a linear function with a slope of 1 and a y-intercept at -2.
- When [tex]\( x = 0 \)[/tex], the value of [tex]\( f(x) = 0 - 2 = -2 \)[/tex].
#### For [tex]\( x > 0 \)[/tex]:
In this interval, [tex]\( f(x) = 3^x - 1 \)[/tex].
- This is an exponential function with a base of 3, shifted downward by 1.
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] grows exponentially.
- When [tex]\( x = 0 \)[/tex], hypothetically [tex]\( 3^x - 1 = 3^0 - 1 = 1 - 1 = 0 \)[/tex]. However, through our definition, this result is not used because the point where [tex]\( x=0 \)[/tex] falls into the other piece of the function.
### Continuity of the function at [tex]\( x = 0 \)[/tex]:
We need to determine if the function is continuous at [tex]\( x = 0 \)[/tex].
- From the left (as [tex]\( x \)[/tex] approaches 0 from the negative side), we use [tex]\( f(x) = x - 2 \)[/tex]. Thus, [tex]\(\lim_{{x \to 0^{-}}} f(x) = 0 - 2 = -2\)[/tex].
- From the right (as [tex]\( x \)[/tex] approaches 0 from the positive side), we use [tex]\( f(x) = 3^x - 1 \)[/tex]. Thus, [tex]\(\lim_{{x \to 0^{+}}} f(x) = 3^0 - 1 = 1 - 1 = 0\)[/tex].
Here, observe there is a discontinuity at [tex]\( x = 0 \)[/tex] since:
[tex]\[ \lim_{{x \to 0^{-}}} f(x) \neq \lim_{{x \to 0^{+}}} f(x). \][/tex]
### Evaluating specific points:
Let's evaluate a few points to understand the behavior of the function better:
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = -1 - 2 = -3 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3^1 - 1 = 3 - 1 = 2 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 3^2 - 1 = 9 - 1 = 8 \][/tex]
### Graphical Representation:
1. On [tex]\( x \leq 0 \)[/tex] side, the graph is a straight line with a negative y-intercept.
2. As [tex]\( x \)[/tex] becomes positive, the graph shifts to the exponential behavior.
From these evaluations:
- When [tex]\( x = 0 \)[/tex], the value is taken from [tex]\( x - 2 \)[/tex] part, giving [tex]\( f(0) = -2 \)[/tex].
In summary, the function [tex]\( f(x) \)[/tex] as defined showcases a piecewise behavior transitioning from a linear function for [tex]\( x \leq 0 \)[/tex] to an exponential one for [tex]\( x > 0 \)[/tex], with a clear discontinuity at [tex]\( x = 0 \)[/tex].
The function [tex]\( f(x) \)[/tex] is defined piecewise over two intervals. Let's write it out clearly:
[tex]\[ f(x) = \begin{cases} x - 2 & \text{if } x \leq 0 \\ 3^x - 1 & \text{if } x > 0 \end{cases} \][/tex]
### Analyzing the two pieces of the function:
#### For [tex]\( x \leq 0 \)[/tex]:
In this interval, [tex]\( f(x) = x - 2 \)[/tex].
- This is a linear function with a slope of 1 and a y-intercept at -2.
- When [tex]\( x = 0 \)[/tex], the value of [tex]\( f(x) = 0 - 2 = -2 \)[/tex].
#### For [tex]\( x > 0 \)[/tex]:
In this interval, [tex]\( f(x) = 3^x - 1 \)[/tex].
- This is an exponential function with a base of 3, shifted downward by 1.
- As [tex]\( x \)[/tex] increases, [tex]\( f(x) \)[/tex] grows exponentially.
- When [tex]\( x = 0 \)[/tex], hypothetically [tex]\( 3^x - 1 = 3^0 - 1 = 1 - 1 = 0 \)[/tex]. However, through our definition, this result is not used because the point where [tex]\( x=0 \)[/tex] falls into the other piece of the function.
### Continuity of the function at [tex]\( x = 0 \)[/tex]:
We need to determine if the function is continuous at [tex]\( x = 0 \)[/tex].
- From the left (as [tex]\( x \)[/tex] approaches 0 from the negative side), we use [tex]\( f(x) = x - 2 \)[/tex]. Thus, [tex]\(\lim_{{x \to 0^{-}}} f(x) = 0 - 2 = -2\)[/tex].
- From the right (as [tex]\( x \)[/tex] approaches 0 from the positive side), we use [tex]\( f(x) = 3^x - 1 \)[/tex]. Thus, [tex]\(\lim_{{x \to 0^{+}}} f(x) = 3^0 - 1 = 1 - 1 = 0\)[/tex].
Here, observe there is a discontinuity at [tex]\( x = 0 \)[/tex] since:
[tex]\[ \lim_{{x \to 0^{-}}} f(x) \neq \lim_{{x \to 0^{+}}} f(x). \][/tex]
### Evaluating specific points:
Let's evaluate a few points to understand the behavior of the function better:
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = -1 - 2 = -3 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3^1 - 1 = 3 - 1 = 2 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 3^2 - 1 = 9 - 1 = 8 \][/tex]
### Graphical Representation:
1. On [tex]\( x \leq 0 \)[/tex] side, the graph is a straight line with a negative y-intercept.
2. As [tex]\( x \)[/tex] becomes positive, the graph shifts to the exponential behavior.
From these evaluations:
- When [tex]\( x = 0 \)[/tex], the value is taken from [tex]\( x - 2 \)[/tex] part, giving [tex]\( f(0) = -2 \)[/tex].
In summary, the function [tex]\( f(x) \)[/tex] as defined showcases a piecewise behavior transitioning from a linear function for [tex]\( x \leq 0 \)[/tex] to an exponential one for [tex]\( x > 0 \)[/tex], with a clear discontinuity at [tex]\( x = 0 \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.