Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the equation [tex]\(x^4 + 3x^2 + 2 = 0\)[/tex] using the [tex]\(u\)[/tex] substitution method, follow these steps:
1. Substitute [tex]\(u\)[/tex] for [tex]\(x^2\)[/tex]:
Let [tex]\(u = x^2\)[/tex]. Then, [tex]\(u^2 = (x^2)^2 = x^4\)[/tex].
Substituting [tex]\(u\)[/tex] into the original equation gives us:
[tex]\[u^2 + 3u + 2 = 0\][/tex]
2. Solve the quadratic equation:
The equation [tex]\(u^2 + 3u + 2 = 0\)[/tex] is a standard quadratic equation. It can be factored as:
[tex]\[(u + 1)(u + 2) = 0\][/tex]
This gives us two solutions for [tex]\(u\)[/tex]:
[tex]\[u + 1 = 0 \quad \text{or} \quad u + 2 = 0\][/tex]
[tex]\[u = -1 \quad \text{or} \quad u = -2\][/tex]
3. Substitute back [tex]\(x^2\)[/tex] for [tex]\(u\)[/tex]:
Remember that [tex]\(u = x^2\)[/tex]. So, we need to solve for [tex]\(x\)[/tex] in the equations [tex]\(x^2 = -1\)[/tex] and [tex]\(x^2 = -2\)[/tex].
4. Solve [tex]\(x^2 = -1\)[/tex]:
We know that [tex]\(x^2 = -1\)[/tex] has complex solutions:
[tex]\[x = \pm i\][/tex]
5. Solve [tex]\(x^2 = -2\)[/tex]:
Similarly, [tex]\(x^2 = -2\)[/tex] also has complex solutions:
[tex]\[x = \pm \sqrt{2} i\][/tex]
Hence, the solutions of the equation [tex]\(x^4 + 3x^2 + 2 = 0\)[/tex] are:
[tex]\[x = \pm i\][/tex]
[tex]\[x = \pm \sqrt{2} i\][/tex]
So, the correct answer is:
[tex]\[x = \pm i \text{ and } x = \pm i \sqrt{2}\][/tex]
This corresponds to the answer:
[tex]\[x= \pm i \text{ and } x= \pm i \sqrt{2}\][/tex]
1. Substitute [tex]\(u\)[/tex] for [tex]\(x^2\)[/tex]:
Let [tex]\(u = x^2\)[/tex]. Then, [tex]\(u^2 = (x^2)^2 = x^4\)[/tex].
Substituting [tex]\(u\)[/tex] into the original equation gives us:
[tex]\[u^2 + 3u + 2 = 0\][/tex]
2. Solve the quadratic equation:
The equation [tex]\(u^2 + 3u + 2 = 0\)[/tex] is a standard quadratic equation. It can be factored as:
[tex]\[(u + 1)(u + 2) = 0\][/tex]
This gives us two solutions for [tex]\(u\)[/tex]:
[tex]\[u + 1 = 0 \quad \text{or} \quad u + 2 = 0\][/tex]
[tex]\[u = -1 \quad \text{or} \quad u = -2\][/tex]
3. Substitute back [tex]\(x^2\)[/tex] for [tex]\(u\)[/tex]:
Remember that [tex]\(u = x^2\)[/tex]. So, we need to solve for [tex]\(x\)[/tex] in the equations [tex]\(x^2 = -1\)[/tex] and [tex]\(x^2 = -2\)[/tex].
4. Solve [tex]\(x^2 = -1\)[/tex]:
We know that [tex]\(x^2 = -1\)[/tex] has complex solutions:
[tex]\[x = \pm i\][/tex]
5. Solve [tex]\(x^2 = -2\)[/tex]:
Similarly, [tex]\(x^2 = -2\)[/tex] also has complex solutions:
[tex]\[x = \pm \sqrt{2} i\][/tex]
Hence, the solutions of the equation [tex]\(x^4 + 3x^2 + 2 = 0\)[/tex] are:
[tex]\[x = \pm i\][/tex]
[tex]\[x = \pm \sqrt{2} i\][/tex]
So, the correct answer is:
[tex]\[x = \pm i \text{ and } x = \pm i \sqrt{2}\][/tex]
This corresponds to the answer:
[tex]\[x= \pm i \text{ and } x= \pm i \sqrt{2}\][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.