Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Given the problem, let's break down the question to find the answer:
1. Identify the known values:
- Heat ([tex]\(q\)[/tex]): [tex]\(3000.0 \, J\)[/tex]
- Mass ([tex]\(m\)[/tex]): [tex]\(0.465 \, kg\)[/tex] (which we need to convert to grams, since specific heat is typically in [tex]\(\frac{J}{g \cdot ^\circ C}\)[/tex]). [tex]\(0.465 \, kg = 465.0 \, g\)[/tex]
- Initial temperature ([tex]\(T_1\)[/tex]): [tex]\(50.0^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_2\)[/tex]): [tex]\(100.0^{\circ} C\)[/tex]
2. Calculate the change in temperature ([tex]\(\Delta T\)[/tex]):
- [tex]\(\Delta T = T_2 - T_1 = 100.0^{\circ} C - 50.0^{\circ} C = 50.0^{\circ} C\)[/tex]
3. Use the formula for heat transfer [tex]\(q = m C_p \Delta T\)[/tex] to solve for specific heat ([tex]\(C_p\)[/tex]):
Rearrange the formula to solve for [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ C_p = \frac{3000.0 \, J}{465.0 \, g \times 50.0^{\circ} C} \][/tex]
5. Calculate [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{3000.0}{465.0 \times 50.0} \, \frac{J}{g \cdot ^\circ C} \][/tex]
[tex]\[ C_p = \frac{3000.0}{23250.0} \, \frac{J}{g \cdot ^\circ C} \][/tex]
[tex]\[ C_p \approx 0.129 \, \frac{J}{g \cdot ^\circ C} \][/tex]
Hence, the specific heat of the substance is approximately [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex].
Considering the multiple choices given:
- [tex]\(0.00775 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.0600 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.155 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
The correct answer is [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex].
1. Identify the known values:
- Heat ([tex]\(q\)[/tex]): [tex]\(3000.0 \, J\)[/tex]
- Mass ([tex]\(m\)[/tex]): [tex]\(0.465 \, kg\)[/tex] (which we need to convert to grams, since specific heat is typically in [tex]\(\frac{J}{g \cdot ^\circ C}\)[/tex]). [tex]\(0.465 \, kg = 465.0 \, g\)[/tex]
- Initial temperature ([tex]\(T_1\)[/tex]): [tex]\(50.0^{\circ} C\)[/tex]
- Final temperature ([tex]\(T_2\)[/tex]): [tex]\(100.0^{\circ} C\)[/tex]
2. Calculate the change in temperature ([tex]\(\Delta T\)[/tex]):
- [tex]\(\Delta T = T_2 - T_1 = 100.0^{\circ} C - 50.0^{\circ} C = 50.0^{\circ} C\)[/tex]
3. Use the formula for heat transfer [tex]\(q = m C_p \Delta T\)[/tex] to solve for specific heat ([tex]\(C_p\)[/tex]):
Rearrange the formula to solve for [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
4. Substitute the known values into the equation:
[tex]\[ C_p = \frac{3000.0 \, J}{465.0 \, g \times 50.0^{\circ} C} \][/tex]
5. Calculate [tex]\(C_p\)[/tex]:
[tex]\[ C_p = \frac{3000.0}{465.0 \times 50.0} \, \frac{J}{g \cdot ^\circ C} \][/tex]
[tex]\[ C_p = \frac{3000.0}{23250.0} \, \frac{J}{g \cdot ^\circ C} \][/tex]
[tex]\[ C_p \approx 0.129 \, \frac{J}{g \cdot ^\circ C} \][/tex]
Hence, the specific heat of the substance is approximately [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex].
Considering the multiple choices given:
- [tex]\(0.00775 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.0600 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
- [tex]\(0.155 \, \frac{J}{g \cdot ^\circ C}\)[/tex]
The correct answer is [tex]\(0.129 \, \frac{J}{g \cdot ^\circ C}\)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.