Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve for [tex]\( x \)[/tex] in the equation [tex]\( 3x - 1 = 27 \)[/tex], we can follow these steps:
1. Isolate the term with [tex]\( x \)[/tex]: The original equation is
[tex]\[ 3x - 1 = 27 \][/tex]
We need to isolate [tex]\( 3x \)[/tex], so we add 1 to both sides:
[tex]\[ 3x - 1 + 1 = 27 + 1 \][/tex]
Simplifying this, we get:
[tex]\[ 3x = 28 \][/tex]
2. Solve for [tex]\( x \)[/tex]: To find [tex]\( x \)[/tex], we need to divide both sides of the equation by 3:
[tex]\[ x = \frac{28}{3} \][/tex]
This gives us:
[tex]\[ x = \frac{28}{3} \approx 9.3333 \][/tex]
So, one of our solutions for [tex]\( x \)[/tex] is [tex]\( \frac{28}{3} \)[/tex].
Now let's check the other possible values of [tex]\( x \)[/tex] given in the options:
- Option 1: [tex]\( x = 10 \)[/tex]
To verify this, plug [tex]\( x = 10 \)[/tex] into the original equation:
[tex]\[ 3(10) - 1 = 30 - 1 = 29 \neq 27 \][/tex]
This does not satisfy the original equation, so [tex]\( x = 10 \)[/tex] is not a valid solution.
- Option 2: [tex]\( x = \frac{28}{3} \)[/tex]
We have already verified that [tex]\( x = \frac{28}{3} \)[/tex] is a solution.
- Option 3: [tex]\( x = \frac{26}{3} \)[/tex]
To check this value, plug [tex]\( x = \frac{26}{3} \)[/tex] into the original equation:
[tex]\[ 3 \left(\frac{26}{3}\right) - 1 = 26 - 1 = 25 \neq 27 \][/tex]
This does not satisfy the original equation, so [tex]\( x = \frac{26}{3} \)[/tex] is not a valid solution.
In conclusion, the correct solution is:
[tex]\[ x = \frac{28}{3} \approx 9.3333 \][/tex]
1. Isolate the term with [tex]\( x \)[/tex]: The original equation is
[tex]\[ 3x - 1 = 27 \][/tex]
We need to isolate [tex]\( 3x \)[/tex], so we add 1 to both sides:
[tex]\[ 3x - 1 + 1 = 27 + 1 \][/tex]
Simplifying this, we get:
[tex]\[ 3x = 28 \][/tex]
2. Solve for [tex]\( x \)[/tex]: To find [tex]\( x \)[/tex], we need to divide both sides of the equation by 3:
[tex]\[ x = \frac{28}{3} \][/tex]
This gives us:
[tex]\[ x = \frac{28}{3} \approx 9.3333 \][/tex]
So, one of our solutions for [tex]\( x \)[/tex] is [tex]\( \frac{28}{3} \)[/tex].
Now let's check the other possible values of [tex]\( x \)[/tex] given in the options:
- Option 1: [tex]\( x = 10 \)[/tex]
To verify this, plug [tex]\( x = 10 \)[/tex] into the original equation:
[tex]\[ 3(10) - 1 = 30 - 1 = 29 \neq 27 \][/tex]
This does not satisfy the original equation, so [tex]\( x = 10 \)[/tex] is not a valid solution.
- Option 2: [tex]\( x = \frac{28}{3} \)[/tex]
We have already verified that [tex]\( x = \frac{28}{3} \)[/tex] is a solution.
- Option 3: [tex]\( x = \frac{26}{3} \)[/tex]
To check this value, plug [tex]\( x = \frac{26}{3} \)[/tex] into the original equation:
[tex]\[ 3 \left(\frac{26}{3}\right) - 1 = 26 - 1 = 25 \neq 27 \][/tex]
This does not satisfy the original equation, so [tex]\( x = \frac{26}{3} \)[/tex] is not a valid solution.
In conclusion, the correct solution is:
[tex]\[ x = \frac{28}{3} \approx 9.3333 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.