Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we'll use the Ideal Gas Law, which is given by the equation:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure.
- [tex]\( V \)[/tex] is the volume.
- [tex]\( n \)[/tex] is the amount of substance (in moles).
- [tex]\( R \)[/tex] is the ideal gas constant.
- [tex]\( T \)[/tex] is the temperature in Kelvin.
### Step-by-Step Solution:
1. Convert the Temperature from Celsius to Kelvin:
The given temperature is [tex]\(35^{\circ}C\)[/tex]. To convert this to Kelvin:
[tex]\[ T = 35 + 273.15 = 308.15 \, K \][/tex]
2. Using the Ideal Gas Law to Find Pressure in atm:
- Given:
- [tex]\( n = 0.250 \)[/tex] moles
- [tex]\( V = 6.23 \)[/tex] liters
- [tex]\( R = 0.0821 \, \frac{L \cdot atm}{mol \cdot K} \)[/tex]
- [tex]\( T = 308.15 \)[/tex] K
- Plugging these values into the Ideal Gas Law equation:
[tex]\[ P \cdot 6.23 = 0.250 \cdot 0.0821 \cdot 308.15 \][/tex]
- Solving for [tex]\( P \)[/tex]:
[tex]\[ P = \frac{0.250 \cdot 0.0821 \cdot 308.15}{6.23} \][/tex]
[tex]\[ P \approx 1.015 \, atm \][/tex]
3. Convert the Pressure from atm to kPa:
- Given that [tex]\(1 \, atm = 101.3 \, kPa\)[/tex]:
[tex]\[ P = 1.015 \, atm \times 101.3 \, \frac{kPa}{atm} \][/tex]
[tex]\[ P \approx 102.841 \, kPa \][/tex]
Thus, the absolute pressure of the air in the balloon is approximately [tex]\(102.841 \, kPa\)[/tex].
Rounded to three significant figures, the absolute pressure is:
[tex]\[ \boxed{103 \, kPa} \][/tex]
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure.
- [tex]\( V \)[/tex] is the volume.
- [tex]\( n \)[/tex] is the amount of substance (in moles).
- [tex]\( R \)[/tex] is the ideal gas constant.
- [tex]\( T \)[/tex] is the temperature in Kelvin.
### Step-by-Step Solution:
1. Convert the Temperature from Celsius to Kelvin:
The given temperature is [tex]\(35^{\circ}C\)[/tex]. To convert this to Kelvin:
[tex]\[ T = 35 + 273.15 = 308.15 \, K \][/tex]
2. Using the Ideal Gas Law to Find Pressure in atm:
- Given:
- [tex]\( n = 0.250 \)[/tex] moles
- [tex]\( V = 6.23 \)[/tex] liters
- [tex]\( R = 0.0821 \, \frac{L \cdot atm}{mol \cdot K} \)[/tex]
- [tex]\( T = 308.15 \)[/tex] K
- Plugging these values into the Ideal Gas Law equation:
[tex]\[ P \cdot 6.23 = 0.250 \cdot 0.0821 \cdot 308.15 \][/tex]
- Solving for [tex]\( P \)[/tex]:
[tex]\[ P = \frac{0.250 \cdot 0.0821 \cdot 308.15}{6.23} \][/tex]
[tex]\[ P \approx 1.015 \, atm \][/tex]
3. Convert the Pressure from atm to kPa:
- Given that [tex]\(1 \, atm = 101.3 \, kPa\)[/tex]:
[tex]\[ P = 1.015 \, atm \times 101.3 \, \frac{kPa}{atm} \][/tex]
[tex]\[ P \approx 102.841 \, kPa \][/tex]
Thus, the absolute pressure of the air in the balloon is approximately [tex]\(102.841 \, kPa\)[/tex].
Rounded to three significant figures, the absolute pressure is:
[tex]\[ \boxed{103 \, kPa} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.