Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To explain the sequence of transformations clearly, let's break it down:
1. The first transformation that maps [tex]$\triangle ABC$[/tex] onto [tex]$\triangle A'B'C'$[/tex] could be a translation, rotation, or any other transformation, but the problem doesn't specify which, so we can call it a "transformation" for now.
2. After [tex]$\triangle A'B'C'$[/tex] is formed, it undergoes a reflection across the line [tex]$x = -2$[/tex] to create [tex]$\triangle A''B''C''$[/tex].
Finally, we need to determine which vertex of [tex]$\triangle A''B''C''$[/tex] will have the same coordinates as [tex]$B'$[/tex]. Since [tex]$\triangle A'B'C'$[/tex] is reflected in the line [tex]$x = -2$[/tex], and one vertex keeps the same position, it must be that [tex]$B'$[/tex] was located right on the line [tex]$x = -2$[/tex] to begin with. Thus, its reflection will also be on the line, indicating that [tex]$B''$[/tex] has the same coordinates as [tex]$B'$[/tex].
Therefore, the correct answers are:
1. The type of transformation is a transformation (it could be a specific type like a translation or rotation).
2. The vertex of [tex]$\triangle A''B''C''$[/tex] that will have the same coordinates as [tex]$B'$[/tex] is B''.
1. The first transformation that maps [tex]$\triangle ABC$[/tex] onto [tex]$\triangle A'B'C'$[/tex] could be a translation, rotation, or any other transformation, but the problem doesn't specify which, so we can call it a "transformation" for now.
2. After [tex]$\triangle A'B'C'$[/tex] is formed, it undergoes a reflection across the line [tex]$x = -2$[/tex] to create [tex]$\triangle A''B''C''$[/tex].
Finally, we need to determine which vertex of [tex]$\triangle A''B''C''$[/tex] will have the same coordinates as [tex]$B'$[/tex]. Since [tex]$\triangle A'B'C'$[/tex] is reflected in the line [tex]$x = -2$[/tex], and one vertex keeps the same position, it must be that [tex]$B'$[/tex] was located right on the line [tex]$x = -2$[/tex] to begin with. Thus, its reflection will also be on the line, indicating that [tex]$B''$[/tex] has the same coordinates as [tex]$B'$[/tex].
Therefore, the correct answers are:
1. The type of transformation is a transformation (it could be a specific type like a translation or rotation).
2. The vertex of [tex]$\triangle A''B''C''$[/tex] that will have the same coordinates as [tex]$B'$[/tex] is B''.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.