Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the slope of the line of best fit for the given data, we will follow these steps:
1. Data Collection:
- The given data for temperature (in degrees) and ice cream sales (in dollars) is as follows:
[tex]\[ \begin{array}{|c|c|} \hline \text{Temperature (ºF)} & \text{Ice Cream Sales (\$)} \\ \hline 61.0 & 107 \\ 60.3 & 116 \\ 64.2 & 120 \\ 66.4 & 122 \\ 71.3 & 125 \\ 73.9 & 130 \\ 74.2 & 132 \\ 75.2 & 135 \\ 80.1 & 151 \\ \hline \end{array} \][/tex]
2. Linear Regression Analysis:
- We will perform a linear regression analysis to find the best fit line [tex]\( y = mx + b \)[/tex] where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
3. Compute Slope and Y-Intercept:
- The slope (m) of the line of best fit is calculated using the formula:
[tex]\[ m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
- The y-intercept (b) can be found using:
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
where [tex]\( \bar{x} \)[/tex] and [tex]\( \bar{y} \)[/tex] are the means of the temperature and ice cream sales data respectively, and [tex]\( n \)[/tex] is the number of data points.
4. Given Results:
- The slope of the line of best fit (m) is approximately [tex]\( 1.7122883366705635 \)[/tex].
- When rounded to one decimal place, this result is [tex]\( 1.7 \)[/tex].
So, the slope of the line of best fit, rounded to one decimal place, is 1.7.
1. Data Collection:
- The given data for temperature (in degrees) and ice cream sales (in dollars) is as follows:
[tex]\[ \begin{array}{|c|c|} \hline \text{Temperature (ºF)} & \text{Ice Cream Sales (\$)} \\ \hline 61.0 & 107 \\ 60.3 & 116 \\ 64.2 & 120 \\ 66.4 & 122 \\ 71.3 & 125 \\ 73.9 & 130 \\ 74.2 & 132 \\ 75.2 & 135 \\ 80.1 & 151 \\ \hline \end{array} \][/tex]
2. Linear Regression Analysis:
- We will perform a linear regression analysis to find the best fit line [tex]\( y = mx + b \)[/tex] where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.
3. Compute Slope and Y-Intercept:
- The slope (m) of the line of best fit is calculated using the formula:
[tex]\[ m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
- The y-intercept (b) can be found using:
[tex]\[ b = \bar{y} - m\bar{x} \][/tex]
where [tex]\( \bar{x} \)[/tex] and [tex]\( \bar{y} \)[/tex] are the means of the temperature and ice cream sales data respectively, and [tex]\( n \)[/tex] is the number of data points.
4. Given Results:
- The slope of the line of best fit (m) is approximately [tex]\( 1.7122883366705635 \)[/tex].
- When rounded to one decimal place, this result is [tex]\( 1.7 \)[/tex].
So, the slope of the line of best fit, rounded to one decimal place, is 1.7.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.