Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's simplify the expression [tex]\(50 + 20 + 37\)[/tex] using the associative property of addition. The associative property states that the way in which numbers are grouped does not affect their sum. Let's evaluate the options given:
Option A:
[tex]\[10(5+2) + 37 = 10(7) + 37 = 70 + 37 = 107\][/tex]
This option uses the distributive property incorrectly and applies unnecessary complexity. Hence, this is not a correct simplification strictly using the associative property.
Option B:
[tex]\[(50 + 20) + 37 = 70 + 37 = 107\][/tex]
This option is correct. Grouping [tex]\(50\)[/tex] and [tex]\(20\)[/tex] first gives [tex]\(70\)[/tex]. Adding [tex]\(37\)[/tex] to [tex]\(70\)[/tex] results in [tex]\(107\)[/tex].
Option C:
[tex]\[50 + 37 + 20 = 87 + 20 = 107\][/tex]
This option reorders the numbers, which is actually using the commutative property of addition, not strictly the associative property. However, since addition is both associative and commutative, the final sum is still correct: [tex]\(50 + 37 + 20 = 107\)[/tex].
Option D:
[tex]\[50 + 20 + 37 = 50 + 57 = 107\][/tex]
This option groups the second and third numbers first: [tex]\(20 + 37 = 57\)[/tex]. Adding [tex]\(50\)[/tex] to [tex]\(57\)[/tex] indeed gives [tex]\(107\)[/tex]. This uses the associative property correctly.
Based on the detailed examination:
- Option A involves an incorrect application.
- Option B uses the associative property correctly.
- Option C uses both associative and commutative properties for a correct sum.
- Option D also uses the associative property correctly.
So, all of the options except for Option A correctly simplify the expression [tex]\(50 + 20 + 37\)[/tex] to [tex]\(107\)[/tex].
Therefore, the correct simplifications are provided by Options B, C, and D.
Option A:
[tex]\[10(5+2) + 37 = 10(7) + 37 = 70 + 37 = 107\][/tex]
This option uses the distributive property incorrectly and applies unnecessary complexity. Hence, this is not a correct simplification strictly using the associative property.
Option B:
[tex]\[(50 + 20) + 37 = 70 + 37 = 107\][/tex]
This option is correct. Grouping [tex]\(50\)[/tex] and [tex]\(20\)[/tex] first gives [tex]\(70\)[/tex]. Adding [tex]\(37\)[/tex] to [tex]\(70\)[/tex] results in [tex]\(107\)[/tex].
Option C:
[tex]\[50 + 37 + 20 = 87 + 20 = 107\][/tex]
This option reorders the numbers, which is actually using the commutative property of addition, not strictly the associative property. However, since addition is both associative and commutative, the final sum is still correct: [tex]\(50 + 37 + 20 = 107\)[/tex].
Option D:
[tex]\[50 + 20 + 37 = 50 + 57 = 107\][/tex]
This option groups the second and third numbers first: [tex]\(20 + 37 = 57\)[/tex]. Adding [tex]\(50\)[/tex] to [tex]\(57\)[/tex] indeed gives [tex]\(107\)[/tex]. This uses the associative property correctly.
Based on the detailed examination:
- Option A involves an incorrect application.
- Option B uses the associative property correctly.
- Option C uses both associative and commutative properties for a correct sum.
- Option D also uses the associative property correctly.
So, all of the options except for Option A correctly simplify the expression [tex]\(50 + 20 + 37\)[/tex] to [tex]\(107\)[/tex].
Therefore, the correct simplifications are provided by Options B, C, and D.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.