Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the equation for the line of best fit representing a woman's height, [tex]\( y \)[/tex], based on her shoe size, [tex]\( x \)[/tex], let's proceed step by step.
Given a data set containing shoe sizes and corresponding heights, we aim to find a linear relationship between these variables. In a linear equation of the form [tex]\( y = mx + b \)[/tex]:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept of the line.
### Step 1: Input the Data Points
The given data points are:
- [tex]\( (7.5, 63) \)[/tex]
- [tex]\( (9, 72.5) \)[/tex]
- [tex]\( (11, 70) \)[/tex]
- [tex]\( (7, 62) \)[/tex]
- [tex]\( (9, 69.5) \)[/tex]
- [tex]\( (10, 72) \)[/tex]
- [tex]\( (12, 72.5) \)[/tex]
- [tex]\( (13, 73) \)[/tex]
- [tex]\( (13, 70) \)[/tex]
### Step 2: Best Fit Line Calculation
The best fit line can be computed using the least squares method for linear regression, where the slope [tex]\( m \)[/tex] and y-intercept [tex]\( b \)[/tex] are determined.
From our calculated result:
- [tex]\( \text{slope, } m = 1.3604 \)[/tex]
- [tex]\( \text{intercept, } b = 55.558 \)[/tex]
### Step 3: Formulating the Equation
Using the calculated slope and intercept, we can write the linear equation as:
[tex]\[ y = 1.3604x + 55.558 \][/tex]
With some slight rounding and comparison to the given options, the equation is closest to the form:
[tex]\[ y = 1.36x + 55.6 \][/tex]
Thus, the correct equation for the line of best fit for a woman's height [tex]\( y \)[/tex], based on her shoe size [tex]\( x \)[/tex], is:
[tex]\[ y = 1.36x + 55.6 \][/tex]
### Conclusion
The correct answer is:
[tex]\[ y = 1.36x + 55.6 \][/tex]
Therefore, among the given options, the answer is:
[tex]\[ \boxed{y = 1.36x + 55.6} \][/tex]
Given a data set containing shoe sizes and corresponding heights, we aim to find a linear relationship between these variables. In a linear equation of the form [tex]\( y = mx + b \)[/tex]:
- [tex]\( m \)[/tex] is the slope of the line.
- [tex]\( b \)[/tex] is the y-intercept of the line.
### Step 1: Input the Data Points
The given data points are:
- [tex]\( (7.5, 63) \)[/tex]
- [tex]\( (9, 72.5) \)[/tex]
- [tex]\( (11, 70) \)[/tex]
- [tex]\( (7, 62) \)[/tex]
- [tex]\( (9, 69.5) \)[/tex]
- [tex]\( (10, 72) \)[/tex]
- [tex]\( (12, 72.5) \)[/tex]
- [tex]\( (13, 73) \)[/tex]
- [tex]\( (13, 70) \)[/tex]
### Step 2: Best Fit Line Calculation
The best fit line can be computed using the least squares method for linear regression, where the slope [tex]\( m \)[/tex] and y-intercept [tex]\( b \)[/tex] are determined.
From our calculated result:
- [tex]\( \text{slope, } m = 1.3604 \)[/tex]
- [tex]\( \text{intercept, } b = 55.558 \)[/tex]
### Step 3: Formulating the Equation
Using the calculated slope and intercept, we can write the linear equation as:
[tex]\[ y = 1.3604x + 55.558 \][/tex]
With some slight rounding and comparison to the given options, the equation is closest to the form:
[tex]\[ y = 1.36x + 55.6 \][/tex]
Thus, the correct equation for the line of best fit for a woman's height [tex]\( y \)[/tex], based on her shoe size [tex]\( x \)[/tex], is:
[tex]\[ y = 1.36x + 55.6 \][/tex]
### Conclusion
The correct answer is:
[tex]\[ y = 1.36x + 55.6 \][/tex]
Therefore, among the given options, the answer is:
[tex]\[ \boxed{y = 1.36x + 55.6} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.