Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's break down the problem step-by-step:
### Understanding the Reaction
The given reaction is:
[tex]\[ CO_2 (g) \rightleftarrows C (s) + O_2 (g) \][/tex]
The problem further states that the formation of iron ([tex]$Fe$[/tex]) and oxygen ([tex]$O_2$[/tex]) from iron(II) oxide ([tex]$FeO$[/tex]) is not thermodynamically favorable at room temperature. To overcome this issue, carbon ([tex]$C$[/tex]) is added to the [tex]$FeO (s)$[/tex] at elevated temperatures.
### Temperature and Thermodynamic Favorability
Since the formation reactions aren't favorable at room temperature, we analyze the conditions at an elevated temperature, specifically at 1000 K.
### Thermodynamic Parameters at Elevated Temperature
Given the conditions at 1000 K:
- The equilibrium constant ([tex]$K_{eq}$[/tex]) at this temperature is found to be 200.
- The change in Gibbs free energy ([tex]\(\Delta G^{\circ}\)[/tex]) is -20000 J (or -20 kJ considering conversion).
### Analyzing the Parameters
1. Equilibrium Constant [tex]\(K_{eq}\)[/tex]
- [tex]$K_{eq}$[/tex] value of 200 at 1000 K indicates a strongly favorable position for the products (C and [tex]\(O_2\)[/tex]) compared to the reactants ([tex]\(CO_2\)[/tex]).
2. Gibbs Free Energy, [tex]\(\Delta G^{\circ}\)[/tex]
- A negative [tex]\(\Delta G^{\circ}\)[/tex] value of -20000 J at 1000 K means the reaction is spontaneous at this temperature.
### Conclusion
For the reaction [tex]\( CO_2(g) \rightleftarrows C (s) + O_2(g)\)[/tex] at 1000 K:
- The equilibrium constant [tex]\(K_{eq}\)[/tex] is 200.
- The sign of [tex]\(\Delta G^{\circ}\)[/tex] is negative, specifically -20000 J.
These numerical results indicate that at 1000 K, the reaction is both thermodynamically favorable and spontaneous.
### Understanding the Reaction
The given reaction is:
[tex]\[ CO_2 (g) \rightleftarrows C (s) + O_2 (g) \][/tex]
The problem further states that the formation of iron ([tex]$Fe$[/tex]) and oxygen ([tex]$O_2$[/tex]) from iron(II) oxide ([tex]$FeO$[/tex]) is not thermodynamically favorable at room temperature. To overcome this issue, carbon ([tex]$C$[/tex]) is added to the [tex]$FeO (s)$[/tex] at elevated temperatures.
### Temperature and Thermodynamic Favorability
Since the formation reactions aren't favorable at room temperature, we analyze the conditions at an elevated temperature, specifically at 1000 K.
### Thermodynamic Parameters at Elevated Temperature
Given the conditions at 1000 K:
- The equilibrium constant ([tex]$K_{eq}$[/tex]) at this temperature is found to be 200.
- The change in Gibbs free energy ([tex]\(\Delta G^{\circ}\)[/tex]) is -20000 J (or -20 kJ considering conversion).
### Analyzing the Parameters
1. Equilibrium Constant [tex]\(K_{eq}\)[/tex]
- [tex]$K_{eq}$[/tex] value of 200 at 1000 K indicates a strongly favorable position for the products (C and [tex]\(O_2\)[/tex]) compared to the reactants ([tex]\(CO_2\)[/tex]).
2. Gibbs Free Energy, [tex]\(\Delta G^{\circ}\)[/tex]
- A negative [tex]\(\Delta G^{\circ}\)[/tex] value of -20000 J at 1000 K means the reaction is spontaneous at this temperature.
### Conclusion
For the reaction [tex]\( CO_2(g) \rightleftarrows C (s) + O_2(g)\)[/tex] at 1000 K:
- The equilibrium constant [tex]\(K_{eq}\)[/tex] is 200.
- The sign of [tex]\(\Delta G^{\circ}\)[/tex] is negative, specifically -20000 J.
These numerical results indicate that at 1000 K, the reaction is both thermodynamically favorable and spontaneous.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.